XVII CONGRESS OF THE IBERIAN SOCIETY OF CYTOMETRY
CONTENTS

01. WELCOME MESSAGES 004
 Julia Almeida Parra .. 006
 Gabriela Martins ... 007

02. COMMITTEES 008
 Organizing Committee 010
 Scientific Committee 012
 Organization ... 015

03. PROGRAMME 016
 Short Version .. 018
 14th June .. 026
 15th June - Congress 040
 16th June - Congress 048
 17th June - Congress 058
 18th June - Congress 068

04. ABSTRACTS 072
 Oral Presentation ... 074
 Invited Oral Presentation 088
 E-Poster .. 092
 Publication .. 148

05. SPONSORS 152
01. WELCOME MESSAGES

JULIA ALMEIDA PARRA
GABRIELA MARTINS
Dear colleagues, dear friends,

The COVID-19 pandemic has an enormous global impact, including a high impact on the scientific community; consequently, to protect general health and wellbeing, both the SIC Board and the Local Organizing Committee agreed to organize the XVII Congress of the Iberian Society for Cytometry in a virtual format, which is really a challenge for all of us, but particularly for the organizers. Thus, we are very grateful for all the work done and to be done by the Organizing Committee of our SIC2021 Congress, chaired by Gabriela Martins.

SIC Meetings have been during many years a core event for networking and interaction for Spanish and Portuguese cytometrists, through promotion of education and scientific exchange in the fields of basic, translational and clinical applications in cytometry, and we hope these general goals are also achieved in a virtual environment. Hosting a virtual congress brings challenges but at the same time opens new possibilities; thus, although face-to-face interactions are an important aspect of any meeting, our goal is to offer a virtual meeting that is dynamic and (almost) as full as our in person event, through implementation of creative and novel digital tools.

I am sure that SIC2021 Meeting will bring people together even in a virtual environment, and I encourage you to have an active and enthusiastic participation. We are all committed to making this new format a resounding success.

With warm regards,

Julia Almeida Parra
President of Iberian Society for Cytometry

Dear colleagues and friends,

It is with great pleasure that we invite you, on behalf of the Board of the Iberian Society of Cytometry (SIC), the Organizing Committee and the Scientific Committee, to the XVII Congress of the Iberian Society of Cytometry, to be held from 14th to 18th June, 2021, in Porto (Portugal). We are greatly honoured to take on the responsibility given to us by the SIC Board. It has been quite a challenge to organize a virtual event, but we believe our new platform will allow us to have an interactive experience, as close as possible to a conventional congress.

We will keep our programme, including educational and plenary sessions, conferences and symposia. Digital tools will provide the same opportunities for discussion in real time. It will certainly be an intuitive and dynamic experience, whether on the computer or on the smartphone.

This virtual platform will also allow us to expand the scope of our scientific programme, with the participation of national and international expert speakers and research teams.

Porto is a beautiful city: a place of culture and knowledge that would be the perfect venue to host this Congress. Even though the evolving COVID-19 pandemic has limited us in many ways, our wish is to welcome you to Porto in the near future.

For now, it will be wonderful to meet you in this new reality of digital events. We would like to thank you for your presence in the XVII SIC Congress, and we truly hope you enjoy attending it.

Gabriela Martins
Chair Organizing Committee
02. COMMITTEES

ORGANIZING COMMITTEE
SCIENTIFIC COMMITTEE
ORGANIZATION
ORGANIZING COMMITTEE

Gabriela Martins
CHAIR

Artur Paiva
CO-CHAIR

Julia Almeida Parra
CO-CHAIR

Margarida Lima
CO-CHAIR

Ana Marta Pires

Carla Azevedo

Carlos Palmeira

Joana Caetano

João Pedro Barreto

José Carlos Segovia

Maria Emilia Sousa

Maria Inês Godinho
SCIENTIFIC COMMITTEE

Alberto Órfão de Matos
Artur Paiva
Bruno Costa Silva
Carlos Fernández Giménez
Carlos Mendes
Carlos Palmeira
Carmen Jerónimo
Catarina Martins

Gabriela Martins
Joana Caetano
Jordi Petriz
José Enrique O’Connor
José Mário Mariz
Julia Almeida Parra
Lúcio Lara Santos
Luis Araújo
Cidália Pina-Vaz

COMMITTEES
03. PROGRAMME

SHORT VERSION
14th JUNE - PRE CONGRESS COURSE
15th JUNE - CONGRESS
16th JUNE - CONGRESS
17th JUNE - CONGRESS
18th JUNE - CONGRESS
PRE-Congress Course 1
FROM TECHNICAL ASPECTS TO AUTOMATED DATA ANALYSIS AND BEYOND

Coordinators: Carlos Palmeira (Porto, Portugal); Alfonso Blanco (Dublin, Ireland)

- 17:00h - 18:00h
 - FLOW CONCEPTS: HOW DOES A CELL BECOME A PLOT?
 - Alexandre Salvador (Porto, Portugal)

- 18:00h - 19:00h
 - MULTICOLOR PHENOTYPING: THE PATH TO DESIGN AND SUCCEED
 - Lola Martinez (Madrid, Spain)

- 19:00h - 20:00h
 - LIGHT UP YOUR RESULTS! APPLY DATA ANALYSIS AND MANAGEMENT SMARTLY
 - Zaida Vergara (Madrid, Spain)

- 19:00h - 20:30h
 - Discussion/Questions

- 20:30h - 20:45h
 - Break

- 20:45h - 21:45h
 - FLOW BEYOND PHENOTYPING: PROBING CELLULAR PROCESSES USING FLOW CYTOMETRY
 - Timothy Bushnell (New York, USA)

- 21:45h - 22:45h
 - LIGHT UP YOUR RESULTS! APPLY DATA ANALYSIS AND MANAGEMENT SMARTLY
 - Zaida Vergara (Madrid, Spain)

- 22:45h - 23:00h
 - Discussion/Questions

PRE-Congress Course 2
LEUKAEMIA AND LYMPHOMA IMMUNOPHENOTYPING: THE BASICS

Coordinators: Gabriela Martins (Porto, Portugal); Sérgio Chacim (Porto, Portugal)

- 17:00h - 18:00h
 - EPIDEMIOLOGICAL ASPECTS FOR LYMPHOMA AND LEUKAEMIA. ITS CLINICAL PRESENTATION AND STRATEGIES FOR DIAGNOSIS
 - Sírgio Chacim (Porto, Portugal)

- 18:00h - 19:00h
 - ACUTE LEUKAEMIA IMMUNOPHENOTYPIC ANALYSIS AND INTERPRETATION
 - Carlos Fernández Giménez (Salamanca, Spain)

- 19:00h - 20:00h
 - Break

- 20:00h - 21:00h
 - MATURE B CELL LYMPHOMAS: IMMUNOPHENOTYPIC ANALYSIS AND INTERPRETATION
 - Joana Caetano (Lisbon, Portugal)

- 21:00h - 22:00h
 - Discussion/Questions

- 22:00h - 23:00h
 - Break

- 23:00h - 24:00h
 - AN INTRODUCTION TO INBORN ERRORS OF IMMUNITY
 - Cátia Iracema Morais (Porto, Portugal)

- 24:00h - 01:00h
 - WHAT YOU SHOULD KNOW ABOUT IMMUNODEFICIENCIES: A CLINICAL AND CYTOMETRIC APPROACH
 - Cátia Iracema Morais (Porto, Portugal)

PRE-Congress Course 3
WHAT YOU SHOULD KNOW ABOUT IMMUNODEFICIENCIES: A CLINICAL AND CYTOMETRIC APPROACH

Coordinators: Esmeralda Novas (Porto, Portugal); António Marinho (Porto, Portugal)

- 17:00h - 18:00h
 - AN INTRODUCTION TO INBORN ERRORS OF IMMUNITY
 - Cátia Iracema Morais (Porto, Portugal)

- 18:00h - 19:00h
 - WHAT YOU SHOULD KNOW ABOUT IMMUNODEFICIENCIES: A CLINICAL AND CYTOMETRIC APPROACH
 - Martín Pérez Andrés (Salamanca, Spain)

- 19:00h - 20:00h
 - Discussion/Questions

- 20:00h - 21:00h
 - Break

- 21:00h - 22:00h
 - APPLICATIONS OF AUTOMATIC ANALYSIS IN THE SCREENING OF CHRONIC LYMPHOPROLIFERATIVE NEOPLASIA AND ACUTE LEUKAEMIA. ANALYSIS OF CLINICAL CASES
 - Paula Fernández (Aarau, Switzerland)

- 22:00h - 01:00h
 - APPLICATIONS OF AUTOMATIC ANALYSIS IN MRD TESTING IN B-ALL AND MULTIPLE MYELOMA. ANALYSIS OF CLINICAL CASES
 - Juan Flores Miranda (Salamanca, Spain)

- 01:00h - 02:00h
 - Discussion/Questions
FLOW CYTOMETRY IN ANIMAL EXPERIMENTAL RESEARCH

Pre-congress course 6

17.00H – 20.45H

Moderators: Rita Ferreira (Aveiro, Portugal); Fátima Gärtner (Porto, Portugal)

17:00h - 17:05h

Introduction

Paula Oliveira (Vila Real, Portugal)

17:05h - 17:30h

The Use of Animal Models in Medical Research: From the Legal Aspects to its Practical Execution

Paula Oliveira (Vila Real, Portugal)

17:30h - 17:50h

Using an Integrated SOP Approach to Design Flow Cytometry Experiments for Animal Research

Jane Srivastava (California, USA)

17:50h - 18:30h

Profile of Immune-Oncology Agents in Syngeneic Tumor Models

Lukasz Magiera (Cambridge, UK)

18:30h - 18:35h

Break

18:35h - 19:00h

Dissecting the Diversity of Mouse Thymic Cells by Flow Cytometry

Pedro Ferreirinha (Porto, Portugal)

19:00h - 19:10h

Discussion/Questions

19:10h - 19:40h

The Use of Animal Models in Medical Research: From the Legal Aspects to Its Practical Execution

Jane Srivastava (California, USA)

19:40h - 20:20h

Monitoring of Therapy in Hematological Malignancies: Can We Move from Bone Marrow to Blood?

Ana Dias (Porto, Portugal)

20:20h - 20:45h

Discussion/Questions
18TH JUNE

19:05h - 19:15h
HEMATOLOGY 2: MEASURABLE RESIDUAL DISEASE EVALUATION BY FLOW CYTOMETRY: ADVANCES AND NEW PERSPECTIVES
Chair: António Campos (Porto, Portugal); Carmen Jerónimo (Braga, Portugal)
Panel Discussion

19:15h - 19:25h
CURRENT FLOW CYTOMETRIC APPROACHES TO MEASURABLE RESIDUAL DISEASE DETECTION ON HEMATOLOGIC MALIGNANCIES
Juan Flores Mondelo (Salamanca, Spain)
Panel Discussion

19:25h - 19:35h
MRD DETECTION: WHAT IS NEW IN AML AND MM
Bruno Paima (Pamplona, Spain)
Panel Discussion

19:35h - 19:45h
Acute Leukemia in a 1-Day-Old Newborn
Oihane Pérez Escuriza (Salamanca, Spain)
Panel Discussion

19:45h - 20:10h
BONE MARROW FOLLICULAR-LIKE T CELLS IN MONOCLONAL GAMMOPATHIES
Beatriz Águila Pérez (Madrid, Spain)
Panel Discussion

20:10h - 20:35h
Survival and Metabolism of HydroxyCinnamic Acids by Dekkera Bruxellensis in Monovarietal Wines
José António Couto (Porto, Portugal)
Panel Discussion

20:35h - 20:55h
Acute Leukemia in a 1-Day-Old Newborn
Ana Catarina Caldas Dias (Viseu, Portugal)
Panel Discussion
<table>
<thead>
<tr>
<th>TIME</th>
<th>SESSION</th>
<th>SPEAKER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00</td>
<td>PLENARY SESSION</td>
<td></td>
</tr>
<tr>
<td>16:00H</td>
<td>CAR-T CELLS THERAPY AND FLOW CYTOMETRY APPLICATION</td>
<td></td>
</tr>
<tr>
<td>17:00H</td>
<td>IMMUNOLOGY 2: IMMUNOTHERAPY</td>
<td></td>
</tr>
<tr>
<td>18:10</td>
<td>PARALLEL SESSION</td>
<td></td>
</tr>
<tr>
<td>18:10H</td>
<td>EXTRACELLULAR VESICLES, PROGRESSION AND TREATMENT RESISTANCE IN CANCER</td>
<td>Chair: Lúcio Lara Santos (Porto, Portugal); Helena Vasconcelos (Porto, Portugal)</td>
</tr>
<tr>
<td>18:45H</td>
<td>EXTRACELLULAR VESICLES, PROGRESSION AND TREATMENT RESISTANCE IN CANCER</td>
<td>Chair: Lúcio Lara Santos (Porto, Portugal); Helena Vasconcelos (Porto, Portugal)</td>
</tr>
<tr>
<td>19:05H</td>
<td>ACCREDITATION AND CERTIFICATION</td>
<td>Chair: Juana Ciudad (Salamanca, Spain); Tiago Guimarães (Porto, Portugal)</td>
</tr>
<tr>
<td>20:30H</td>
<td>CLOSING CONFERENCE</td>
<td></td>
</tr>
</tbody>
</table>

Panel Discussion

- Francisca Dias (Porto, Portugal)
- Sofia Antunes Costa Lima (Lisbon, Portugal)
- Bruno Costa Silva Vasconcelos (Porto, Portugal)
- Helena (Porto, Portugal); Chair: Lúcio Lara Santos (Porto, Portugal)
- Carlos Palmeira (Porto, Portugal)

Opportunities

- Potential of extracellular vesicles
- Cargo as molecular biomarkers for clear cell renal carcinoma patient’s management

Flow Cytometry

- Flow karyotyping and chromosome sorting
- Flow cytometric assessment of telomere length by flow cytometry
- Cytometrics in immunotherapy treatment decision-making

Flow Cytometry Laboratories

- How to adapt and rise to a pandemic
- SARS-CoV2 biosecurity guidelines for the management of potentially biohazardous samples

Flow Cytometry

- Flow cytometry for deconvolution of large immunoenotype datasets and biomarker discovery in cancer immunology
- Flow cytometry for the management of potentially biohazardous samples - SARS-CoV2

Flow Cytometry Systems

- Flowfish: assessment of telomere length by flow cytometry
- Flowcytometry: assessment of telomere length by flow cytometry
- Flowcytometry: assessment of telomere length by flow cytometry

Flow Cytometry

- Flow cytometric assessment of telomere length by flow cytometry
- Cytometrics in immunotherapy treatment decision-making
- Flowcytometry: assessment of telomere length by flow cytometry
PRE-Congress Courses

PCC 1. From technical aspects to automated data analysis and beyond
PCC 2. Leukaemia and lymphoma immunophenotyping: The basics
PCC 3. What you should know about immunodeficiencies: A clinical and cytometric approach
PCC 4. Nanocytometry, cell sorting and functional assays
PCC 5. Automatic analysis at diagnosis and follow-up
PCC 6. Flow cytometry in animal experimental research

14th June
LEARNING OBJECTIVES

- Technical concepts and principles of flow cytometry system. What is flow cytometry and what you need to know about the instrument;
- Basic rules for equipment and experiences set-up and standardization, strategies for multiparametric panel design: what to take consideration to improve panel design and choosing the right controls;
- Phenotyping and functional assays: how they can provide a more complete picture of the cell;
- Automatic analysis and data management: how to handle and analyze more data and information using automatic analysis is also illustrated and discussed in this pre-congress course.

TARGET AUDIENCE

Students or clinical and research laboratory professionals, from different fields.

DESCRIPTION

This course is for all professionals who wish to start using the flow cytometry in their work, what they need to know. The course provides an overview of flow cytometry, from its basic technical principles and set-up according with the best practice, to data analysis and applications in clinic and research. How to handle and simplify the analysis of large amount of data and information using automatic analysis is also illustrated and discussed in this pre-congress course.

This course provides an overview of flow cytometry, from its basic technical principles and set-up according with the best practice, to data analysis and applications in clinic and research. How to handle and simplify the analysis of large amount of data and information using automatic analysis is also illustrated and discussed in this pre-congress course.

FLOW CONCEPTS: HOW DOES A CELL BECOME A PLOT?

Alexandre Salvador
Porto, Portugal

Flow Cytometry is a techinic used for the study of individual cells. Cell by cell is analyzed by the passage thru a laser. The light deflected will give us relative information on size and complexity of the cells. Also, we can add fluorochromes, so we can get more information about this cell. For example, if we add a fluorescent that could only stain the cell if there is a damage in the membrane, like in a dead cell, we can them identify which cell is live and which are dead. Because we can also count a substantial number of cells, this measurements by flow cytometry can be statistically robust. With the new instruments available, also the number of fluorochromes that we can detect at the same time, is much higher. It’s usual to detect more of 4 at the same time. This means that we can also use antibody’s, coupled with different fluorochromes, and identify, at the same time, different antigens at a cellular level. This allows us to detect co-expressions, different levels of expression, maturations and differentiations patters, etc... All this technology can, in special cases be used also to separate physically the cells (cell sorting), even in a single cell-based assay. This could allow experiments to be possible for example, to study the expression for some gene, protein or RNA. Flow cytometry is and will be a useful tool to use in the study of your cells. The representation of the parameter, according to the detection that was made, will also be a crucial point to do interpretation. So, cells in suspension, go in a liquid until the interpenetration point, were they pass the lasers and by dispersion and emission of fluorescence, we interpret who they are. The system converts the electronics pulses created by each cell that emits signals into a digital signal, and in the end, a list mode file is created for each sample or acquisition. Only them we use software to analyze the data and interpretate the results. We can also do reanalysis or share these files with others. In resume, take in consideration:

- What instrument will you use.
- What the configuration? What lasers and filters are installed?
Leukaemia and lymphoma immunophenotyping: The basics

Gabriela Martins
COORDINATOR
Porto, Portugal

Sérgio Chacim
COORDINATOR
Porto, Portugal

EPIDEMIOLOGICAL ASPECTS FOR LYMPHOMA AND LEUKAEMIA, ITS CLINICAL PRESENTATION AND STRATEGIES FOR DIAGNOSIS

Sérgio Chacim
Porto, Portugal

Clinical lymphoproliferative diseases present themselves with different epidemiological aspects. This talk will address lymphocyte development in order to understand lymphoid malignancies classifications (B and T-cell differentiation within human body). We will talk about known risk factors in developing Non-Hodgkin lymphoma, as well as common clinical presentation of this disease. There will be a focus on diagnosis, with all its morphology aspects, Immunophenotyping and molecular genetics and cytogenetics. Staging and prognostic aspects will be discussed.

We will discuss acute myeloid leukemia as a clinical model for acute lymphoproliferative diseases, approaching its different aspects for diagnosis, in order to classify it, according to recent publications. The initial working panel for evaluating a patient and treatment hallmarks will be discussed. The new and hot-topic refractory disease option treatments will later be revealed, its mechanisms of action and efficacy and toxicity.

ACUTE LEUKAEMIA: IMMUNOPHENOTYPIC ANALYSIS AND INTERPRETATION

Carlos Fernández Giménez
Salamanca, Spain

Leukemia is one of the most common malignant disorders affecting the world population, mainly in more developed areas. Globally, in 2018, leukemia ranked as the fifteenth most common diagnosed cancer with 437,033 cases and 309,006 mortalities, amounting to the eleventh cause of death due to malignant disorders. However, the geographic distribution of leukemia is universal, with higher prevalence and overall mortality in the more developed countries, probably caused because of the improvements in quality of life. The mortality rate, however, is higher in developing countries where public health systems, access to therapies and care of patients remains as a challenge.

Acute leukemias (AL) are malignant clonal disorders of blood-forming organs involving one or more cell lines in the hematopoietic system. These disorders are marked by the diffuse replacement of bone marrow with abnormal immature and undifferentiated hematopoietic cells, resulting in reduced numbers of erythrocytes and platelets in the peripheral blood. Based on the origin of the abnormal hematopoietic cells involved, such as lymphoid, myeloid, mixed or undifferentiated, these disorders are classified accordingly. This classification has been modified according to the access to the knowledge about the pathophysiology of these diseases. In fact, first classifications were based on cytomorphology; this was a very important step, but not good enough. The union of molecular and immunohistochemistry approaching had a tremendous impact; pathophysiology was much better understandable and therefore, outcome, prognosis and predictor factors were proposed, basically based on the genetics, improving the stratification of patients in order to propose the best therapy options and opening new perspectives for new drugs and treatments (less aggressive and more efficient).

In parallel, the development and improvement in immunophenotyping, with new technology, more robust knowledge about the NORMAL hematopoiesis and the abnormal patterns detected in patients with acute leukemia, in many cases correlated with specific genetic aberrations. These facts claimed the need of a new landscape for flow cytometry and hematology, where all the benefits of this technique could improve dramatically in the best knowledge of the normal and clonal hematopoiesis, providing physicians robust information useful for diagnosis, prognosis and monitoring of these diseases.

The improvements started with the standardization of technique. Then with the development of useful panels built in order to answer key clinical questions: lineage of blast, phenotypic profiles related to prognosis and outcome for patients and further monitoring.

In the last years main advances have come specially in BCP-ALL where flow cytometry provides a high robust information about the kinetic of the disease, a new dynamic approaching about the leukemic transformation and evolution and immunophenotypic profiles related to recurrent cytogenetic changes with prognostic impact.

Unfortunately, in TCP-ALL, the immunophenotyping shows less impact due to till to date, no changes in the phenotype are related to specific molecular/genetic changes. However, flow cytometry provides useful information to classify and stratify at least cortical T-AL and shows the high specificity to identify the Early T-AL. Of course, a long try remains to be done and we hope in short/medium time improvements will be available.

Finally, flow cytometry has shown the utility and application in myeloid hematopoiesis. The development of standardized panels focus on the study of myelopoesis from a dynamic point of view has changed our minds about the clonal myeloid hematopoiesis focused on MDS and AML. Thus, AML immunophenotyping allows to give important and strong answers about the blasts in parallel with the microenvironment; a better discrimination among the blast, their lineage and degree commitment, detection and characterization of multiple clones, crucial to predict the outcome and potential response and relapse. In these terms, flow cytometry has shown the utility specially in promyelocytic acute leukemia, undifferentiated leukemia, mixed phenotype AL, blastic plasmacytoid dendritic cell neoplasm.

In this pre congress course, our main goal is to provide the attendants tools for a better understanding about new and modern analysis strategies. These are based on well-structured profiles/templates in order to facilitate the work.
What you should know about immunodeficiencies:
A clinical and cytometric approach

Esmeralda Neves
COORDINATOR
Porto, Portugal

António Marinho
COORDINATOR
Porto, Portugal

TARGET AUDIENCE
Medical and other health science professionals with activities in relation to immunology.

DESCRIPTION
Flow cytometry is a highly sensitive tool for evaluating the immune system and supporting the diagnosis of Primary Immunodeficiency (PID). The applications of flow cytometry in the evaluation of PIDs are multiplex and include the investigation of specific cell populations and subpopulations, specific cell membrane, intracellular and intranuclear proteins, biologic effects associated with immune defects, and functional immune abnormalities.

LEARNING OBJECTIVES
Epidemiology, etiology, sites of involvement and clinical features of Primary Immunodeficiencies. Immunophenotyping of normal lymphoid subpopulations in peripheral blood. Examples of Primary Immunodeficiencies – Analysis of cases using the proper software.

AN INTRODUCTION TO INBORN ERRORS OF IMMUNITY
Cátia Iracema Morais
Porto, Portugal

Inborn errors of immunity (IEI) are a heterogeneous group of diseases that result from the impairment of normal immune development or function. Although individually rare, IEI have a group prevalence up to 5 in 1000. Clinical presentation is diverse and includes recurrent, severe and/or unusual infections, autoimmune features, allergy and an increased susceptibility to malignancy.

The cornerstone of a thorough approach to a possible IEI is a good clinical history and physical examination. From there, if warning signs of IEI are identified, screening lab tests should be ordered, including parameters that allow for exclusion of relevant differentials. With this information, it is sometimes possible to identify the most likely involved element of the immune system.

Further laboratory evaluation should be done in a stepwise approach, with increasing complexity, leaving more differentiated analysis for the referral specialist. Definitive diagnosis relies on identification of the causative genetic defect, which allows for an adequate choice of treatment.

During this presentation, we will review the most common presenting features and screening laboratory findings of the ten categories of IEI according to the International Union of Immunological Societies’ classification, and briefly address the approach to treatment of these disorders.

WHAT YOU SHOULD KNOW ABOUT IMMUNODEFICIENCIES: A CLINICAL AND CYTOMETRIC APPROACH
Martin Pérez Andrés
Salamanca, Spain

The participants will learn the critical parameters that are required for diagnostic and classification of primary immunodeficiencies (PID) by flow cytometry including: 1) recommended parameters to evaluate in PID patients according to international guidelines (ESID, WHO, IUIS), protocols and techniques required for the analysis of these parameters, and reference values.

EMERGENCIES ASSOCIATED TO INBORN ERRORS OF IMMUNITY: THE ROLE OF THE FLOW CYTOMETRY WITH PRACTICAL CASE ANALYSIS
Catarina Martins
Lisbon, Portugal

Inborn Errors of Immunity (IEI), previously known as Primary Immunodeficiency disorders, are a diverse and growing group of diseases, with recognized defects or functional impairment in immune players, often identified in early childhood and adolescence. In some scenarios, Inborn Errors of Immunity can arise as paediatric emergencies, as it happens with SCID or hemophagocytic syndromes.

In these situations, a timely identification of the underlying condition is crucial, and flow cytometry represents an important laboratory methodology with the necessary promptitude and effectiveness. Thus, clinicians and laboratory scientists need to properly identify and recognize the flow cytometry tests helpful for the diagnostic of IEI in diverse situations, and obviously interpret their respective alterations, such as the typical lymphocyte immunophenotypic profile in SCID patients, or the characteristic features of functional flow cytometry assays in disorders like CGD or hemophagocytic syndromes. Moreover, flow cytometry can bring relevant data for distinguishing primary and secondary causes, as happens in primary and secondary hemophagocytic syndromes.

With this talk we aim to explore flow cytometry approaches in the context of IEI, particularly applicable to emergencies.
Small particles: concepts and biology; what is the interest?

Topics covered and discussed throughout this pre-congress course.

Finally, the recent strategies for microvesicle analysis based on direct capture of exosomes on different types of biomarkers and risk factors, as well as the functional characterization of exosomes as drug-delivering microparticles.

This presentation is intended to integrate flow cytometry as a choice methodology among the current techniques for studying extracellular vesicles, as well as to provide a panoramic view of the evolution and most relevant current applications of flow cytometry in this growing field. While the clinical applications of flow cytometry to extracellular vesicles were mostly oriented to clinical purposes, early work with isolated mitochondria and isolated Golgi vesicles showed the feasibility of applying conventional flow cytometers to functional characterization of isolated subcellular microparticles. Because of the current interest in exosomes and other extracellular vesicles, basic, translational and clinical studies by flow cytometry are of paramount relevance, and reports on technical improvements and specific working guidelines have been published, which help to standardize a complicated technical and biological issue.

Current applications of cytometric analysis of extracellular vesicles in basic biology include the detection of extracellular vesicles and microparticles, the phenotypic and functional characterization of extracellular vesicles and the sorting of extracellular microparticles for –omic studies. Translational and clinical applications include the identification of extracellular vesicles as signaling factors, the establishment of extracellular vesicles as disease biomarkers and risk factors, as well as the functional characterization of exosomes as drug-delivering microparticles.

The importance of detecting sub-micron particles in flow cytometry has become extremely relevant in the last decades given the role of viruses and extracellular vesicles in health and disease, as well as the use of nanoparticles for drug delivery and therapeutics. In this first presentation, we will introduce some of the basic concepts and best practices to measure sub-micron particles in flow cytometry.

HOW TO APPROACH SORTING OF BIONANOPARTICLES, VIRUSES AND EXTRACELLULAR VESICLES

José Enrique O’Connor

This presentation is intended to integrate flow cytometry as a choice methodology among the current techniques for studying extracellular vesicles, as well as to provide a panoramic view of the evolution and most relevant current applications of flow cytometry in this growing field. While the clinical applications of flow cytometry to extracellular vesicles were mostly oriented to clinical purposes, early work with isolated mitochondria and isolated Golgi vesicles showed the feasibility of applying conventional flow cytometers to functional characterization of isolated subcellular microparticles. Because of the current interest in exosomes and other extracellular vesicles, basic, translational and clinical studies by flow cytometry are of paramount relevance, and reports on technical improvements and specific working guidelines have been published, which help to standardize a complicated technical and biological issue.

Currently, nanoparticles are of increasing interest as potential drug delivery systems due to their small size, which allows them to access tissues and organs that large particles cannot. Flow cytometry is a powerful tool for analyzing the properties of nanoparticles, including size, shape, charge, and surface modifications. By using flow cytometry, researchers can study the interaction of nanoparticles with biological systems, monitor their internalization and distribution, and evaluate their therapeutic potential.

HOW TO APPROACH SORTING OF BIONANOPARTICLES, VIRUSES AND EXTRACELLULAR VESICLES

Oscar Fornas

Nanoparticle sorting is one of the most complex applications of flow cytometry. Basically, we are very close to or below the resolution limit of the technique. Precisely for this reason, unlike large-particle applications, we must use other technologies that validate our methodology. Without such validations, we cannot fully believe the data we obtain by cytometry. Huge amount of published data of nanoparticles analysis by flow cytometry generate interesting discussions but unfortunately a methodological consensus has not yet been reached. With this presentation we intend to show our approach to the study of nanoparticles using flow cytometry, through our experience handling nanoparticle, as well as the steps we have followed to validate the analysis and sorting of these nanometric particles.

NANOCYTOMETRY, CELL SORTING AND FUNCTIONAL ASSAYS

José Enrique O’Connor

This presentation is intended to integrate flow cytometry as a choice methodology among the current techniques for studying extracellular vesicles, as well as to provide a panoramic view of the evolution and most relevant current applications of flow cytometry in this growing field. While the clinical applications of flow cytometry to extracellular vesicles were mostly oriented to clinical purposes, early work with isolated mitochondria and isolated Golgi vesicles showed the feasibility of applying conventional flow cytometers to functional characterization of isolated subcellular microparticles. Because of the current interest in exosomes and other extracellular vesicles, basic, translational and clinical studies by flow cytometry are of paramount relevance, and reports on technical improvements and specific working guidelines have been published, which help to standardize a complicated technical and biological issue.

Current applications of cytometric analysis of extracellular vesicles in basic biology include the detection of extracellular vesicles and microparticles, the phenotypic and functional characterization of extracellular vesicles and the sorting of extracellular microparticles for –omic studies. Translational and clinical applications include the identification of extracellular vesicles as signaling factors, the establishment of extracellular vesicles as disease biomarkers and risk factors, as well as the functional characterization of exosomes as drug-delivering microparticles.

Finally, the recent strategies for microparticle analysis based on direct capture of exosomes on different types of beads, allowing easy exosome purification, but also exosome phenotyping and quantification by flow cytometry, as well as the application of bioinformatic tools to multiplex assay of exosomes.

TARGET AUDIENCE

Students or clinical and research laboratory professionals, from different fields.

DESCRIPTION

Despite recent advances, the study and application of “small particles”, such as, microparticles, extracellular vesicles, or viruses, in basic and clinical research, remains a major challenge due to the lack of standardized protocols. Flow cytometry has been suggested as a suitable technology for their detection, sorting and analysis. But how do we do it? What technical and practical aspects should be considered, from cytometer set up to analysis? How to validate results? What kind of applications at structural and functional level can be used? These are some of the topics covered and discussed throughout this pre-congress course.

LEARNING OBJECTIVES

- Small particles: concepts and biology; what is the interest?
- Sorting in nanocytometry: why and how to perform it? Good practice guidelines
- Cytomics assays applied to small particles study: validation, potential in basic as well as in clinical research
Applications of automatic analysis in MRD testing in B-ALL and multiple myeloma: Analysis of clinical cases

P. F. Monforte, Salamanca, Spain

The process of complete standardization of flow cytometry MRD assessment also includes the stage of data analysis and interpretation. Software assisted data analysis tools based on reference databases are being more and more incorporated on routine use. These tools have demonstrated to be highly sensitive, hold a convenient cost-effective balance, and maintain a very high correlation when compared vs fully expert-based analysis strategies, which makes them suitable to be used on residual disease detection. During the presentation, we will review the particularities of automated gating and identification tools in the field of residual disease determination and follow the analysis of practical, real-life B-ALL and MM samples to illustrate its utility.
USING AN INTEGRATED SOP APPROACH TO DESIGN FLOW CYTOMETRY EXPERIMENTS FOR ANIMAL RESEARCH

Jane Srivastava California, USA

“When designing a multi-colour antibody panel for a flow cytometry experiment, there are many considerations to think about other than just what fluorophore to assign to what antibody. Several factors contribute to a successful experiment outside of panel design, including background research, sample preparation and data analysis. Using a model of designing a 15 colour panel for determining mouse bone marrow mesenchymal stromal cell populations, this presentation shows how combining different aspects of experimental design into a consolidated standard operating procedure can reduce ambiguity and lead to a reliable and strong template to utilise in flow cytometry experiments.”

DISSECTING THE DIVERSITY OF MOUSE THYMIC CELLS BY FLOW CYTOMETRY

Pedro Ferreirinha Porto, Portugal

The immune system, composed by different effector cell populations, is an essential part of our body’s defence against invading pathogens and cancer cells. The development of these different cell types is the result of a complex network of differentiation processes that occur in primary lymphoid organs. The thymus, containing thymic epithelial cells (TECs), is the primary lymphoid organ required for the development of T cells. However, its unique biology imposes limitations that make the in-depth study of this organ in humans challenging. Over the decades, mice have emerged as the preferred animal model to study the immune system due to the unique advantages of this species, as well as close parallelsisms with the human immune system. In this work, using mice and flow cytometry, we tackle the inherent diversity of medullary thymic epithelial cells (mTECs), a key population for the development of functional but self-tolerant T cells. Of notice, we develop a novel flow cytometry panel to dissect mTECs through the inclusion of the markers CD24 and SCA1. Their analysis combined with markers previously established for mTEC assessment provides an efficient strategy to dissect different mTEC subpopulations and map the final stages of differentiation of this critical cell population for tolerance induction.

PROFILING OF IMMUNE-ONCOLOGY AGENTS IN SYNGENEIC TUMOUR MODELS

Łukasz Magiera Cambridge, UK

Breakthrough in cancer therapy caused by the discovery of immune checkpoint blocking antibodies such as αPD-1, αPD-L1, and αCTLA-4 reinvigorated interest in understanding and development of novel immunotherapy agents. Mouse syngeneic models, which have a functional immune system, represent an essential tool for pre-clinical evaluation of new immunotherapies. However, immune response varies widely between the available models and the translational relevance of each of them is not fully understood, making selection of an appropriate pre-clinical model for drug development challenging. Therefore, it is essential to understand the dynamic interplay between the tumour and the immune system and develop robust methodology to enable high-volume drug development studies. We used some of the most established syngeneic models, such as CT-26, MC38 and 4T1, to characterise their microenvironment and changes in immune populations that occur over time. We then applied those findings to explain the underlying differences in their responses to immune checkpoint blockade and guide model selection for development of novel immunotherapies.
Monitoring of therapy in hematological malignancies: Can we move from bone marrow to blood?
Hematology 1: Advances in diagnosis (Part 1)
Microbiology: Clinical and flow cytometry application
Hematology 1: Advances in diagnosis (Part 2)
GECLID MEETING
Monitoring of therapy in hematological malignancies: Can we move from bone marrow to blood?

Alberto Órfa Salamanca Spain

Since the late 1990’s monitoring of minimal residual disease (MRD) by either PCR-based molecular approaches or multicolor flow cytometry has proven to have a great clinical utility in most acute and chronic leukemias. Thus, due to its higher sensitivity in detecting residual tumor cells, MRD measurements provide an in-depth assessment of the quality of conventional (complete) response to therapy, at the same time it has emerged as (one of) the most valuable prognostic factor(s), independently of the therapy administered. Because of this, MRD has progressively been included in prospective clinical trials and therapeutic protocols in e.g., childhood and adult acute lymphoblastic leukemia (ALL) and multiple myeloma (MM), among other hematological malignancies. In such studies, assessment of MRD levels in bone marrow (BM) at specific time points after starting therapy, has been used for both re-stratification of patient risk and MRD-directed treatment intensification and to a less extent also, de-escalation leading to significantly improved patient outcomes. Due to such important clinical utility, and progressive adoption of BM MRD testing in many centers worldwide, selection of the most adequate and robust MRD assay has become of utmost relevance.

At present it is well-established that together with PCR-based next-generation sequencing, next generation flow cytometry (NGF) techniques are the preferred methods for MRD monitoring in leukemia and MM. Compared to conventional flow cytometry, NGF approaches are typically based on i) optimized and validated multi-color (>8-color) antibody panels, that include a set of markers for high-sensitive and specific detection of tumor cells and simultaneous estimation of sample hemodilution, ii) acquisition of high numbers of BM cells (i.e. >10 million cells/sample), and iii) automated gating, data analysis and reporting for an improved reproducibility. The standardized and validated EuroFlow NGF panels and procedures are particularly suited for standardized MRD monitoring in e.g., ALL and MM. This is mainly due to the fact that their performance has been technically validated against the ASOqPCR gold standard or high-sensitive NGS approaches, and clinically tested in large prospective cohorts of uniformly treated patients.

Despite all the above advantages and contributions, MRD monitoring in BM remains a suboptimal procedure for monitoring therapy in most hematological malignancies. This relates to the fact that BM aspiration remains an invasive procedure that cannot be frequently repeated in the same patient, particularly in children and in elderly patients; moreover, BM samples are usually diluted with variable levels of blood, and frequently their analysis does not provide an accurate, and sometimes even representative, estimation of the tumor burden in BM due to a heterogeneous (patchy) pattern of infiltration by the tumor, affected also by the relative counts associated with BM aplasia vs regeneration. In order to overcome some of these limitations, in recent years, monitoring of circulating tumor cells (CTC) in blood has become a matter of investigation. A major advantage of monitoring CTC in blood vs BM MRD is that blood sampling is a minimally invasive procedure suitable for more frequently monitoring, it provides absolute (as well as relative) tumor cell counts, it more closely reflects tumor dissemination, and allows for simultaneous CTC and immune monitoring, particularly in the setting of patients treated with novel immunomodulatory and immunotherapeutic agents. Of note, the increased sensitivity reached with the novel NGF approaches developed for BM MRD monitoring, has set the basis for investigation of their utility for CTC detection both at diagnosis and after therapy, particularly in patients with e.g., ALL, acute myeloblastic leukemia (AML), and MM, among other hematological malignancies.

Early CTC studies performed in blood samples of ALL patients, already showed a high degree of agreement between CTC levels in blood and BM MRD in T-ALL. In contrast, the same studies revealed that in most B-cell precursor (BCP) ALL patients in whom the BM was MRD+, no CTC were detectable in blood. With the increase in sensitivity of both molecular and flow cytometry approaches, more recent studies have been developed in the last three years. These studies have confirmed the previously reported similar rates of positivity for CTC in blood and MRD in BM in patients with T-ALL. In addition, these studies also showed that in BCP-ALL, the increased sensitivity of NGS and NGF is associated with a significant decrease in the frequency of discrepant cases (from 75% to 30% of positive samples). Similar results to those observed in T-ALL have also been reported in AML by several groups in independent patient cohorts. In addition, recent studies in MM also proved that CTC are detectable by NGS at diagnosis in blood of virtually every symptomatic MM and symptomatic MM patient, in around one fourth of all MM patients are also detectable after therapy, including around 15-20% of patients who achieved complete response. Importantly, studies comparing the clinical impact of the persistence/re-emergence of CTC in blood vs BM MRD have shown a complementary prognostic value for both assay measurements. Thus, despite virtually all AML, AML and MM patients that show CTC in blood after therapy are also MRD+ in BM, representing only a fraction of all BM MRD-positive cases, the presence of CTC in blood identifies a subgroup of BM MRD+ patients at higher risk of relapse/disease progression, who might potentially benefit from earlier treatment interventions. In addition, it permits simultaneous monitoring of persistence of CTC in blood and disease response to distinct modalities of immunotherapy. As an example, protocols have been developed for simultaneous monitoring of up to hundreds of different subsets of CTC cells and other immune cells, in addition to CTC, in patients who had received CAR T-cell based treatments.

In summary, in the last decades MRD monitoring has been recognized as one of the most valuable biomarkers for in-depth analysis of response to therapy, re-stratification of patient risk and early treatment intervention in the setting of large multicentric protocols and clinical trials. Despite all advantages and the clinical value MRD monitoring in BM is associated with several practical limitations that have fostered the feasibility and clinical utility of blood-based monitoring of CTC vs BM MRD. Preliminary data indicates that simultaneous monitoring of CTC in blood provides an attractive and clinically informative tool for more frequent monitoring of response to therapy in patients with hematological malignancies, including ALL, AML and MM, allowing both identification of BM MRD+ patients who might benefit from earlier treatment interventions and simultaneous CTC and immune monitoring in the settings of immunotherapy.

IMMUNOPHENOTYPIC IDENTIFICATION OF SÉZARY CELLS IN BLOOD USING EUROFLOW STRATEGIES

Julia Almeida Salamanca Spain

Sézary syndrome (SS) is defined by the clinical triad of erythroderma, generalized lymphadenopathy and the presence of neoplastic, clonally related, T cells in peripheral blood (PB) and skin. The diagnosis of SS is often challenging, due to non-specific clinical and histopathological features that are also frequently seen in much more prevalent benign erythrodermic skin disorders. In such circumstances, the unequivocal identification of Sézary cells and the assessment of tumor burden in PB is crucial for diagnosis, and becomes progressively relevant for disease staging and treatment monitoring. Flow cytometry is considered the ideal method for detecting Sézary cells, which in clinical practice is mostly based on the characteristic loss of CD26 and CD7 surface molecules by tumor cells, usually associated to lower expression of other pan-T-cell markers. However, it should be noted that there is no specific marker for Sézary cells, as normal CD4+ T cells (both in basa and particularly in reactive conditions) may show phenotypes that resemble that of Sézary cells (i.e. a CD7 -CD26- profile), mainly when flow cytometry is performed on non-optimized multi-color (>8-color) antibody panels. Moreover, normal CD4+ T cells may show phenotypes that are shared with Sézary cells, mainly when flow cytometry is performed on non-optimized multi-color (>8-color) antibody panels.

In such circumstances, the unequivocal identification of Sézary cells and the assessment of tumor burden in PB is crucial for diagnosis, and becomes progressively relevant for disease staging and treatment monitoring. Flow cytometry is considered the ideal method for detecting Sézary cells, which in clinical practice is mostly based on the characteristic loss of CD26 and CD7 surface molecules by tumor cells, usually associated to lower expression of other pan-T-cell markers. However, it should be noted that there is no specific marker for Sézary cells, as normal CD4+ T cells (both in basa and particularly in reactive conditions) may show phenotypes that resemble that of Sézary cells (i.e. a CD7 -CD26- profile), mainly when flow cytometry is performed on non-optimized multi-color (>8-color) antibody panels. Moreover, normal CD4+ T cells may show phenotypes that are shared with Sézary cells, mainly when flow cytometry is performed on non-optimized multi-color (>8-color) antibody panels.

In such circumstances, the unequivocal identification of Sézary cells and the assessment of tumor burden in PB is crucial for diagnosis, and becomes progressively relevant for disease staging and treatment monitoring. Flow cytometry is considered the ideal method for detecting Sézary cells, which in clinical practice is mostly based on the characteristic loss of CD26 and CD7 surface molecules by tumor cells, usually associated to lower expression of other pan-T-cell markers. However, it should be noted that there is no specific marker for Sézary cells, as normal CD4+ T cells (both in basa and particularly in reactive conditions) may show phenotypes that resemble that of Sézary cells (i.e. a CD7 -CD26- profile), mainly when flow cytometry is performed on non-optimized multi-color (>8-color) antibody panels. Moreover, normal CD4+ T cells may show phenotypes that are shared with Sézary cells, mainly when flow cytometry is performed on non-optimized multi-color (>8-color) antibody panels.

In such circumstances, the unequivocal identification of Sézary cells and the assessment of tumor burden in PB is crucial for diagnosis, and becomes progressively relevant for disease staging and treatment monitoring. Flow cytometry is considered the ideal method for detecting Sézary cells, which in clinical practice is mostly based on the characteristic loss of CD26 and CD7 surface molecules by tumor cells, usually associated to lower expression of other pan-T-cell markers. However, it should be noted that there is no specific marker for Sézary cells, as normal CD4+ T cells (both in basa and particularly in reactive conditions) may show phenotypes that resemble that of Sézary cells (i.e. a CD7 -CD26- profile), mainly when flow cytometry is performed on non-optimized multi-color (>8-color) antibody panels. Moreover, normal CD4+ T cells may show phenotypes that are shared with Sézary cells, mainly when flow cytometry is performed on non-optimized multi-color (>8-color) antibody panels.

In such circumstances, the unequivocal identification of Sézary cells and the assessment of tumor burden in PB is crucial for diagnosis, and becomes progressively relevant for disease staging and treatment monitoring. Flow cytometry is considered the ideal method for detecting Sézary cells, which in clinical practice is mostly based on the characteristic loss of CD26 and CD7 surface molecules by tumor cells, usually associated to lower expression of other pan-T-cell markers. However, it should be noted that there is no specific marker for Sézary cells, as normal CD4+ T cells (both in basa and particularly in reactive conditions) may show phenotypes that resemble that of Sézary cells (i.e. a CD7 -CD26- profile), mainly when flow cytometry is performed on non-optimized multi-color (>8-color) antibody panels. Moreover, normal CD4+ T cells may show phenotypes that are shared with Sézary cells, mainly when flow cytometry is performed on non-optimized multi-color (>8-color) antibody panels.
Inherited platelet function disorders are a very heterogeneous group of diseases, which makes the diagnosis a challenge. In the last few years, there has been a great advance in the knowledge of new genetic variants. This knowledge has shown that an accurate diagnosis has prognostic importance, since certain entities are associated with the predisposition to malignant hematological diseases (RUNX1-related thrombocytopenia, ANKRD26-related thrombocytopenia, and ETV6-related thrombocytopenia). Bone marrow failure syndromes (MPL and MECOM mutations) and syndromic diseases (MYH9-related thrombocytopenia). In our point of view, the diagnostic approach to congenital platelet diseases should follow a stepwise algorithm. This strategy is particularly important and essential to guide the genetic study and help in its interpretation, especially when carried out by next-generation sequencing (NGS) techniques, that needs to be critically evaluated taking into account clinical and laboratory phenotypes. The first steps include platelet count, peripheral blood smear, platelet function analyzer (PFA), light transmission aggregometry and flow cytometry studies. Contributions of flow cytometry comprise simple tests like the confirmation of platelet count in select cases (e.g., giant platelets) and platelet size evaluation using forward scatter (FSC). Cytometry also allows the study of platelet membrane receptors with important functions, such as the fibrinogen receptor (GpIIb-IIIa), the von Willebrand factor receptor (Gp Ib–IX–X), the collagen receptors (GpIa-IIa and GpVI), among others. As mutations in GFI1B gene that cause macrothrombocytopenia have been associated with increased expression of CD41 in platelets, this assessment has been proposed as a screening test for GFI1B mutations. Finally, several studies of platelet activation can be performed by flow cytometry, using different agonists and evaluating the expression of membrane molecules only expressed after activation, such as the GP IIb-IIIa activation epitope (PAC1), aνb3 (P-selectin), among others. This allows for the measurement of platelet activation at basal conditions and their reactivity in response to various agonists.
COLISTIN ACTIVITY EVALUATION THROUGH FLOW CYTOMETRY
Daniela Fonseca e Silva
Porto, Portugal

The increasing prevalence of multidrug-resistant Gram-negative bacteria worldwide has led to a re-evaluation of the previously discarded antibiotic such as colistin. Despite its important role as last line therapy for otherwise untreated infections, dosage guidelines for the use of colistin are not well defined and have led to treatment failure and increased colistin resistance.

For this reason accurate assessment of colistin susceptibility is crucial in multidrug-resistant Gram-negative bacteria and for the decrease of colistin resistance. Both EUCAST and CLSI recommend broth microdilution (BMD) to determine colistin susceptibility, however it is cumbersome and growth-dependent. In this presentation, a rapid and accurate assay by flow cytometry method (FASTinov®) for colistin susceptibility directly from colonies and positive blood cultures (BCs) is described with a turnaround time of 2 h versus 48 h required for BMD. This method represents an accurate alternative to standard BMD.

ACUTE MYELOID LEUKEMIA WITH RECURRENT IMMUNOPHENOTYPIC ABNORMALITIES
Sergio Matarazz
Salamanca, Spain

Acute myeloid leukemia (AML) is an exceedingly heterogeneous clonal disorder arising from stepwise accumulation of genetic events on hematopoietic stem, progenitor and/or precursor cells, leading to an oligoclonal expansion of leukemic cells in the bone marrow. The genetic background of AML involves a wide range of driver and passenger mutations, which impacts on patient risk stratification and further therapy decisions. For more than 20 years, baseline flow cytometry studies have brought upfront important correlations among the immunophenotype and genotype of leukemic cells in AML.

In this session we review most relevant immunophenotypic patterns and surrogate markers for prediction of underlying genetics in AML at diagnosis. The acquired knowledge over years, together with current analytical strategies being developed by EuroFlow for automated prediction of clinically relevant genetic alterations on AML leukemic cells, will conceivably help early risk stratification and therapy selection of these patients in clinical routine.

PROBING THE BONE MARROW MICROENVIRONMENT IN LEUKEMIA
Delfim Duarte
Porto, Portugal

Hematopoietic stem cells (HSCs) are maintained by local bone marrow niches or microenvironments, including endothelial and mesenchymal stem cells. Leukemias, and in particular acute myeloid leukemia (AML), rely on cell extrinsic signals of the microenvironment to expand and evade chemotherapy. It has been shown that AML also remodels the bone marrow niche and indirectly affects non-malignant hematopoiesis. Flow cytometry is a key tool to study the hematopoietic system. When combined with other techniques such as imaging and RNA-sequencing, it allows a comprehensive study of the bone marrow microenvironment. I will discuss applications of flow cytometry to study the niche, with a focus on mouse models and our work on AML and vascular microenvironments.

ROOM 1
GECLID MEETING
Carmen Martín
Salamanca, Spain

This is the 10th year of GECLID quality assurance program, initiated in 2011, that started to run under the shared auspices of the Iberian Society for Cytometry and the Spanish Society for Immunology by mid-2012. The program is ISO 9001: 2015 certified for interlaboratory comparisons in Diagnostic Immunology Tests for External Quality Assurance, with participants in Europe, South America and Australia. It comprises cytometry interlaboratory comparisons for lymphocytes, stem cells, innate and lymphocyte function, hematological malignancies, and rituximab follow up. In 2021, PD1 and T-cell repertoire schemes are available for the first time.

Along 2020, 82 cytometry labs took GECLID schemes, accounting for almost 20% of the total activity of GECLID (https://www.geclid.es/), which runs as well autoimmunity, histocompatibility and immunochemistry schemes.

Two main challenges are now our main aim: shortening of evaluation times, and increasing the number and repertoire of pathological samples sent. 2020 was a hard year for everyone and delays were assumed in order to include the maximum number of results from every lab. Recruiting cases was as well specially complicated due to the exceptional situation.

We are grateful to everyone participating, to our assessors within the Steering Committee, to those recruiting patients and sending samples. We hope we can be useful for at least 10 more years and we are ready to go on helping participant labs to our best.
CONGRESS

SIC Working Groups
SARS-CoV2 and flow cytometry
Immunology 1: Immune monitoring
Flow cytometry in animal and oceanic sciences
Hematology 2: Measurable residual disease evaluation by flow cytometry: Advances and new perspectives
Flow cytometry in biotechnology

16TH JUNE
SARS-COV2 and flow cytometry

Chair: Jordi Petriz
Barcelona, Spain;
Andrea Cossarizza
Modena, Italy

FLOW CYTOMETRY MONITORING OF SARS-COV-2 INFECTION REVEALS IMMUNE PROFILES AND KINETICS ASSOCIATED WITH DISEASE SEVERITY

Julia Almeida
Salamanca, Spain

Coronavirus disease 2019 (COVID-19), caused by a novel coronavirus not encountered before by humans (named severe acute respiratory syndrome coronavirus 2, SARS-CoV-2), has raged for more than one year now, as declared by the WHO (World Health Organization). Clinical manifestations of COVID-19 patients range from mild disease (e.g. only fever or cough, or even asymptomatic disease, which we know now that occurs in most cases >80%-) to critically ill cases with acute respiratory distress syndrome and septic shock. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection, as the virus pathogenesis depends on the interaction between host immune genetic factors, environmental and virus agents. Therefore, understanding the underlying immune response would contribute to better know the ability of the different components of immune system in controlling the early phases of the infection, and hence to explain successful responses to SARS-CoV-2 infection or, on the other hand, to elucidate immune dysregulated and excessive inflammation mechanisms responsible for acute respiratory distress syndrome in severe/critically ill patients, as well as the components involved in long-term protective responses. Further, this knowledge becomes crucial to have prognostic/predictive biomarkers early in the course of disease, to promptly make appropriate decisions for improving clinical management. An extensive number of reports -mainly restricted to patients with moderate to severe/very severe disease- have actually described altered blood circulating immune cells in COVID-19 patients, which typically includes early lymphopenia at the expense of all the major lymphocyte subsets, together with an exacerbated plasma cell response, while more heterogeneous changes have been reported for innate cells. Importantly, the adaptive immune response has been shown to be critical in the later stages of COVID-19 infection, through generation of increased levels of neutralizing immunoglobulins against RBD (receptor-binding domain) and other domains of the spike viral protein. Although many large studies have described the immune profiles in COVID-19 patients, and related them with disease outcome, immune response dynamics during the course of SARS-CoV-2 infection and its possible correlation with clinical trajectory remain relatively unknown, and further, many of these studies have the following limitations: i) comparison of patient data with healthy donors has not been normalized according to the age of the controls; ii) long-term paired longitudinal studies have not been usually performed; iii) kinetics of immunological parameters has not been relativized to a common onset, such as the date of first COVID-19 symptom.

In order to solve these limitations and aiming at better understanding the basis of the immune response in COVID-19, as well as the precise association between certain immune profiles and the severity of the disease, we performed at the University of Salamanca and Hospital Universitario de Salamanca/IBSAL a global longitudinal analysis of innate and (cellular and humoral) adaptive immunity in COVID-19 patients (n=539 peripheral samples from 324 cases, from April 2020 to February 2021, from which a total of 136 samples from 23 samples were closely -every 24-48h- immune-monitored during the first 20 days since the onset of symptoms) selected across the spectrum of disease severity, ranging from asymptomatic/mild individuals to moderate, severe, and critically ill COVID-19 infected patients.

As regards the immune-cell kinetics during COVID-19 infection, our results show a systematic (early) decrease in dendritic cell counts followed by neutrophilia (with or without monocytosis), eosinopenia, basopenia and lymphopenia. Among lymphocytes, cytotoxic T cells decreased first, followed by CD4+ T cells, and subsequently, plasma cells (all isotypes and subclasses) peaked in blood (between day 6 and 14). As regards humoral response, we showed mild transient increased in IgM-specific antibodies, together with markedly increased and more stable amounts of IgG (until day +100) whereas IgA antibodies showed an intermediate profile (high but transient plasma levels). In general, between days 15 and 21 since the onset of symptoms, blood cell counts returned to normal values. Importantly, different immune profiles related to distinct severity outcomes of the disease. Accordingly, more severe cases were associated with higher counts of neutrophils and more pronounced eosinopenia and lymphopenia, together with higher (but delayed vs moderate/mild cases) counts of plasma cells and higher plasma levels of specific IgG and IgA against SARS-CoV-2, which also persisted for longer periods of time vs mild patients.

Overall, our analyses provide a comprehensive understanding of the diverse blood immune-cell kinetics during COVID-19 infection and show distinct immune-profiles in blood associated with the severity of the disease.
Finally, we show different examples for monitoring these cell compartments both in healthy individuals and in other clinical settings, such as the monitoring of tissue damage in total hip arthroplasty, coronary artery disease, and monoclonal gammopathies.

PARALLEL SESSION | ROOM 1

Immunology 1: Immune monitoring

Chair: Artur Paiva

Maria José Oliveira

Porto, Portugal

NEW STRATEGIES FOR B-CELLS MONITORING IN INFECTION, AUTOIMMUNITY AND IMMUNODEFICIENCIES

Martin Perez Andrés

Salamanca, Spain

The participants will learn which are the most informative phenotypic markers for subsetting the human B-cell subsets according to their maturation subset and the light subclass expressed.

After that, they will learn the reference values for each B-cell subset according to the age of the donor.

This information will be used to review which are the most significant alterations of these B-cell subsets in individuals suffering from infections, autoimmune diseases, and primary immunodeficiencies, and the clinical impact of these alterations.

SINGLE CELL APPROACHES FOR T CELL MONITORING IN VIRAL INFECTIONS AND CANCER

Sara De Biasi

Modena, Italy

Over the past two decades, a pressing need to deeply profile cells responsible for the immune response has led investigators to integrate data obtained from traditional approaches with those obtained with new, more sophisticated, single-cell technologies, including high parameter flow cytometry, single-cell sequencing and high-resolution imaging. The introduction and use of these technologies have a prominent impact in the field of viral infection and cancer immunotherapy, allowing delving deeper into the molecular and cellular crosstalk between immune system cells, and fostering the identification of predictive biomarkers of response. In this talk, we will discuss how cutting-edge single-cell approaches are helping to point out the heterogeneity of immune cells in blood.

IMMUNOPHENOTYPE OF BLOOD MONOCYTE AND DENDRITIC CELL SUBSETS

Daniela Damasceno

Salamanca, Spain

The importance of studying blood monocytes and dendritic cells resides in the need for the detection of a homeostasis imbalance which occurs each time we are exposed to external agents, which enter our organism and induce an innate immune response. For the detection of these alterations is crucial to have consistent criteria for the identification of the main innate cell subsets and their minor subpopulations as well as extensive data on healthy donors in order to compare it with data from patients.

To accomplish these goals, we have developed a combination of the most informative markers in the scope of the Euroflow-Periscope consortium, allowing for the identification and classification of monocyte and dendritic cell subsets. Among the markers described, IgG, high-affinity receptor and Fas molecules are reviewed, as they were recently found to be expressed in a subset of classical monocytes/dendritic cells and in a subset of non-classical monocytes, respectively. Moreover, myeloid derived suppressor cells, CD100+ pre-dendritic cells, hematopoietic progenitors and other immune cells are also identified.

PARALLEL SESSION | ROOM 2

Flow cytometry in animal and oceanic sciences

Chair: Vítor Vasconcelos

Porto, Portugal; Ana Faustino

Faro, Portugal; José Carlos Segovia

Madrid, Spain

LOW CYTOMETRY IN VETERINARY ONCOLOGY

Fulvio Riondato

Turin, Italy

Currently the most important diagnostic application of flow cytometry in veterinary oncology is for the characterization of lymphomas in pets. Flow cytometric analysis helps in the differentiation between neoplastic and reactive nodal enlargement; the main features considered are cell size (FSC), the prevalence of a population with a unique immunophenotype vs a mixed population, the presence of abberant patterns. Immunophenotyping is fundamental for the correct classification of lymphomas according both to the histologic and cytogetic classifications (WHO and Kiel updated, respectively) where the recognition of the cell lineage (B vs T) is mandatory. In the case of T-zone lymphomas flow cytometry is predictive of the WHO subtype (CD45-negative T-cells).

Additional diagnostic information are obtained through the determination of the proliferative activity (Ki67 and S-phase fraction), useful for the discrimination between low grade/indolent and high grade/ forms. Flow cytometry is commonly used for staging the disease looking for peripheral blood and bone marrow infiltration; the analysis of splenic and hepatic US-guided aspirates can also be easily performed. It is also run to assess MRD at the end of chemotherapy.

Different flow cytometric data with prognostic significance have been described: Ki67% in large B cell lymphomas (LBCL), MHC-II expression in B-cell lymphomas, percentage of peripheral blood infiltration in MZL and bone marrow infiltration in LBCL and MZL, nodal MRD in DLBCL treated with chemo-immunotherapy, nodal non-neoplastic lymphoid populations at the time of diagnosis in DLBCL.

Recently we developed a flow cytometric approach to characterize canine mast cell tumor and to detect the presence of mast cells in lymph nodes and other organs. The clinical significance of flow cytometric data compared to the reference classification system remains to be determined. Finally, the routine panel used for the analysis of effusions in dogs can be implemented with the evaluation of cytokeratin, vimentin and desmin in the non-hemopoietic population, thus providing useful indication for the differential diagnosis of mesothelaoma and carcinoma.

ISOLATION AND IMMUNOPHENOTYPING OF PERIPHERAL BLOOD AND INTRAEPITHELIAL AND LAMINA PROPRIA

Beatriz Agulla Pérez

Madrid, Spain

Inflammatory bowel disease (IBD) is an unknown etiologic entity characterized by the persistence and recurrence of gastrointestinal clinical signs. It is considered the principal cause of chronic vomiting and diarrhea in the dog. Intestinal immunological, dietary, genetic and environmental factors appear to play a role in the pathogenesis of this immune-mediated disease. Its diagnosis is obtained after carrying out an exclusion protocol of all underlying causes for intestinal inflammation accompanied by histological evidence of mucosal inflammatory infiltrate.
In human medicine, the great advances in IBD immunopathogenesis have allowed the development of new therapeutics based on immunotherapy and the description of useful immune biomarkers. However, the knowledge of immune system alterations during IBD course in the canine species is limited. For this reason, in the present study the peripheral blood and the intestinal immunophenotype of dogs with IBD were assessed by flow cytometry. In order to employ flow cytometry for intestinal immunophenotyping, firstly a protocol for intraepithelial and lamina propria duodenal lymphocytes (IEL and LPL, respectively) isolation were described because for LPL this technique had not been previously reported in the canine species. In this regard, a protocol for each intestinal location, which provides the necessary quality criteria for flow cytometry evaluation of these lymphocytes in terms of viability, purity and cell yield, was selected.

Then, for the evaluation of the potential immunophenotype alterations in dogs with IBD, it was first necessary to characterize the lymphocyte populations that seem to have relevance in this disease by flow cytometry (considering the lymphocytes subsets T, Th, Tc, double positive T cells, double negative T cells, activated Th and Tc, IFN-γ and E-4 producing T in both peripheral blood and intestinal biopsy) in 16 healthy dogs of different age, sex and breed. These data allow us to have our own reference ranges. In addition, the comparative study of these lymphocytes distribution in the three immune compartments analyzed: peripheral blood, epithelium and the duodenal lamina propria, showed great differences in the composition of these cell types. This fact support the importance of its independent study. Furthermore, a greater similarity has been found between the blood and the duodenal lamina propria compartments.

The knowledge of physiological values for normal canine blood lymphocytes and IEL and LPL enabled to assess the potential alterations developed in dogs with IBD (in 36 animals). The dogs with IBD showed an increase in the percentage of activated Th and in the percentage and in the relative count of the Treg and TH2 from bloodstream than healthy dogs. In the intestine, a decrease in the epithelial percentage of Th, double positive T cells, activated Th and in the CD4/CD8 ratio; and an increase in the epithelial percentage of Tc and producing IFN-γ lymphocytes and lamina propria Treg lymphocytes percentages was observed in the disease dogs. The findings show the alteration of both systemic and intestinal immunophenotype in the canine IBD course.

Microbes are the base of the marine food web, making up >70% of the living biomass in the seas and oceans. The ecology and evolution of viruses (10^10 in the global oceans) are entwined with that of their hosts, making them key modulators of microbial populations. The high-throughput characteristics of flow cytometry (FCM) enable an unprecedented detailed investigation of the ecological impact of viruses in the marine environment. Here I provide some examples; firstly, the combination with FCM promotes high-resolution field measurements for viruses and bacteria abundances in the Southern Ocean. Furthermore, it allows for estimations of viral lysis rates of bacteria. The study exemplifies how high viral lysis rates drove lower bacterial abundances under constant bacterial production for bacteria abundances in the Southern Ocean. Furthermore, it allows for estimations of viral lysis rates of bacteria. The study exemplifies that high viral lysis rates drove lower bacterial abundances under constant bacterial production.anova

Our results show that viral lysis is an important mortality factor for all the phytoplankton populations discriminated by flow cytometry during summer in the Northeast Atlantic Ocean. It revealed a switch from grazing to viral lysis with decreasing latitude, with important implications for the biogeochemical cycles. Likewise, my research using an Arctic phytoplankton host-virus model system benefit greatly from FCM, allowing a detailed analysis of how environmental factors affect virus infectivity and proliferation. Low light availability was found to constraint while high temperature promoted virus production with important implications for the Arctic marine ecosystem. Results will be discussed in relation to natural dynamics and global warming expectations. Currently, we connect our FCM-based Arctic viral ecology research with viral and host metagenomics diversity studies.

HOW AUTOMATED FLOW CYTOMETRY CAN IMPROVE OUR UNDERSTANDING OF THE PLANCTON STRUCTURE, DISTRIBUTION AND FUNCTIONING

Gerald Grégoire | Marseille, France

Flow cytometry has greatly contributed to improve our knowledge of aquatic trophic food web through the exploration at the single-cell level of the various planktonic communities such as phytoplankton, bacteria, marine viruses. Apart from counting these planktonic particles the analysis of variations in autofluorescence, light scatter and the use of fluorescent stains has demonstrated its power in elucidating the physiology and adaptations of organisms to the natural environment both in natural samples and in culture. Automated in situ flow cytometry makes it possible to sample the Ocean with a high spatial and temporal resolution, offering a new opportunity to address complex questions and bring new answers to better understand the functioning of the marine ecosystem. For instance, model simulations and satellite observations have shown that ocean dynamics at fine scales (1–100 km in space, day–weeks in time) strongly influence the distribution of phyttoplankton. This temporal scale is similar to that of many biological processes, such as phyttoplankton growth, suggesting a physical and biological coupling. To better characterize this coupling, both physical and biological measurements in situ are mandatory. However, the observations of fine scales constitute a challenge due to the dificulties of sampling at high spatial-temporal frequency. In this presentation, we will present how a satellite-based adaptive and Lagrangian strategy coupled with a high-resolution physical-biological sampling, using an automated flow cytometer installed onboard, has been performed to follow and describe fine-scale structures in the Mediterranean Sea.

CURRENT FLOW CYTOMETRIC APPROACHES TO MEASURABLE RESIDUAL DISEASE DETECTION ON HEMATOLOGIC MALIGNANCIES

Juan Flores Montero | Salamanca, Spain

Minimal residual disease detection by flow cytometry currently holds a relevant place on treatment monitoring strategies of hematologic malignancies; although, over the years, this consideration has been recognized at different paces for different disease categories. The utility of MRD flow cytometry strategies to measure the direct effect of the therapeutic interventions, compare this effect among different therapeutic regimes, re-stratification of patient’s risk and to anticipate prognostic information directly linked to classical clinical endpoints is now more broadly recognized. During the presentation, we will review the most recent and widely used flow cytometry approaches for MRD detection in onco-hematology and underline the characteristics of a successful strategy. In addition, the aspects currently active for innovation and the opportunities for improvement will be discussed.
Flow cytometry in biotechnology

Application of Flow Cytometry in the Assessment of Natural Products Bioactivities
Rui Abreu, Bragança, Portugal

The interest in natural products characterization and application in different research areas has increased sharply in the last decade. It is acknowledged that natural matrices have tremendous potential as sources of bioactive extracts and individual natural compounds to be used in a large variety of biotechnology-related research fields, including food, cosmetic and pharmaceutical applications. Many bioactivities are studied to assess the potential of natural products, including antioxidant, anti-inflammatory, antimicrobial, and antitumoral activities. Flow cytometry can be applied in the analysis of these bioactivities. In this presentation, the focus will be on the use of flow cytometry to study the antitumoral activity of several natural matrices, including different plants and mushrooms, by analyzing their effect on the onset of apoptosis and the impact on the cell cycle process. An example of the use of flow cytometry in the study of synthetic compounds will also be presented, as the principles of analyzing bioactivities of both natural and synthesized compounds are similar. Finally, we will demonstrate that flow cytometry is an instrumental methodology in discovering natural products’ bioactivities and elucidating the respective cellular and molecular mechanism of action.

Flow Cytometry in Food Microbiology as Related to Cheese Production
Martin Wilkinson, Limerick, Ireland

Cheese production involves the conversion of milk into a flavourful semi solid product using selected Lactic Acid Bacteria (LAB) as an integral part of the production and ripening processes. LAB are added to cheese milk as “starter” strains having been selected for consistent acid production, resistance to bacteriophage and production of typical flavours during ripening. On the day of manufacture in the cheese vat, LAB generate lactic acid to reduce the pH value from ~6.6 in milk to ~5.3 at salt addition stage. The second major contribution of LAB starter strains is from their proteolytic enzyme system which consists of external Cell Envelope Proteinase (CEP) and a range of intracellular peptidase enzymes including the Pep X peptidase responsible for de-bittering and assisting in generation of flavourful free amino acids. Ripening and flavour development of cheese is generally attributed to the action of LAB proteolytic enzymes which are released from non-viable, permeabilised and autolysed cells. The application of flow cytometry (FCM) to understanding the microbiology of cheese ripening has been considerable especially in our understanding of strain-related differences that exist in autolysis, permeabilization, intracellular release and how they impact upon proteolysis and cheese flavour. Initially, prior to the application and development of flow cytometry methods to study LAB in cheese, our understanding of LAB physiology was limited to data from viable plate counts and detection of activity of released marker enzymes such as Lactate Dehydrogenase (LDH) and Pep X. The use of flow cytometry with differential staining methods (SYTO9/PI) when combined with enzyme release and localisation studies has greatly advanced our insights into the influence of cheese production processes on the response of differing starter strains. We now know that the cooking temperature step of Cheddar cheese manufacture, where a shift from 32 to 38°C occurs over 30 mins, has major strain related effects on the commencement of the permeabilization and autolysis process and indeed appears to greatly influence both intracellular enzyme release and accessibility. The importance of this cooking temperature step on LAB strains is reflected in differing rates of ripening and flavour development brought on by differing proteolysis levels from the intracellular enzymes released by the LAB strains. Hence, FCM when combined with enzymology and flavour development studies has allowed a greater optimisation of control of the ripening process. In terms of selection of starter LAB strains for particular cheese application, FCM has enabled the new criteria to be used to select LAB strains for use in the production of low salt cheese where starters can be selected for optimised enzyme release in cheeses with altered compositional environments.
Flow cytometry in solid tumors
New frontiers in FCM applications
Extracellular vesicles, progression and treatment resistance in cancer
Accreditation and certification

17th June
Congress
PARALLEL SESSION | ROOM 1
Flow cytometry in solid tumors
Chair: Júlio Oliveira Porto, Portugal; Carmen Jerónimo Porto, Portugal

PREPARE TO EXPLORE THE TUMOR MICROENVIRONMENT
Martijn Van Baalen Amsterdam, Netherlands

Biopsies from solid tumors are often small and rare samples. Since this material can only be used once, it’s important to obtain a single cell suspension of high quality to probe.

In the quest to explore the immune component of the tumor micro environment, preparation and optimization of tissue dissociation are key. The most important aspects in the experimental design phase are covered to obtain high cell yield, viability, and retrieve high quality data from the cells of interest. This presentation has a focus on analysis of immune cells from solid tumors, but the provided information is also applicable to other cellular assays from a wide range of tissue samples.

Learning outcomes
- Learn why optimization is key when probing the immune component of solid tumors.
- Learn about key elements that can be optimized in the sample preparation phase.
- Understand why flow cytometry experiments are hypothesis driven.

THE POTENTIAL OF FLOW CYTOMETRY FOR IMMUNOSCORE ANALYSIS OF HUMAN LUNG TUMORS
Alexandre Corthay Oslo, Norway

Measuring the state of the antitumor immune response in order to provide each cancer patient with an “Immunoscore” has a great potential to predict the risk of recurrence and the response to therapy. In this lecture, I will show how flow cytometry can be used for detailed analysis of tumor-infiltrating immune cells in human non-small cell lung cancer.

The staining panels that we have established can in principle be used to investigate the immune cell composition of any type of human tumors. I will also discuss the advantages and limitations of using flow cytometry to generate an immunoscore in comparison with immunostaining of formalin-fixed, paraffin-embedded (FFPE) tumor sections.

ANALYSES OF THE PERIPHERAL IMMUNE IN CANCER IMMUNOTHERAPY TRIALS
Renee Donahue Bethesda, USA

Dr. Donahue’s talk on “Analyses of the Peripheral Immune in Cancer Immunotherapy Trials” will provide evidence that analyses of the peripheral immune, which is much more easily accessible than the tumor, can provide valuable information. Interrogating the peripheral immune can provide information on the immune status of patients prior to therapy, which can help to identify those patients most likely to benefit from immunotherapy or combination therapies. In addition, evaluation of the peripheral immune can provide mechanistic information on the effect of various therapies (including “non immune based therapies”, immunotherapies, or combinations of therapies) on immune cell subsets that are not easily identified in biopsies. Finally, interrogating the peripheral immune and identifying differences in responding and non-responding patients can help to inform rational combination approaches for future studies.

NEW FRONTIERS IN FCM APPLICATIONS
Paul Robinson Indiana, USA

The importance of rapid identification of viral structural sequence quickly followed by cellular subset and activation molecules identification to determine clinical impact was highlighted during the early days of the COVID-19 pandemic. Apart from the obvious importance of sequencing, one of the earliest clinical discoveries was the change in T-cell subsets and the dramatic impact of upregulation of cytokines causing cytokine storms with dramatic clinical impact on patient morbidity. These discoveries were made within weeks of the earliest stage of the pandemic and were made using flow cytometry – a single cell technology that has become a go-to technology in immunology. For many years flow cytometry has had a place of significant importance to a few very specific subsets of scientists, but the COVID pandemic most definitely enhanced the importance of the technology.

However, technologies are not stable entities. They change and adapt to changing demands. If don’t, they become redundant and end up as footnotes in history! Fortunately, for many of us, flow cytometry has adapted – not as quickly as Covid perhaps, but sufficient to survive for perhaps another 20 years as a highly relevant technology. One example of this morphing is the transition from polychromatic to spectral cytometry. I gave my first talk on this in 2004 when I was convinced spectral flow cytometry would become the only approach within a few years. Of course, I was wrong, but only in the timing, although some would argue that timing is everything!! My sense of the present pace in spectral instrument development is that that 5 years may well be accurate this time! I guess we will see if my predicative ability has improved!

But there is more than just spectral cytometry on the horizon. There is a potential for a 2nd generation spectral technology that we have been working on that may provide many more features that we currently consider when we design our experiments. The presentation will discuss the engineering developments in next-generation of technology that will open up new frontiers in biotechnology research and most importantly in both research and clinical diagnostics. The presentation will outline new sensor technology and how this has generated huge datasets that require advanced analytical toolssets for automated diagnostics.

FLOW KARYOTYPING AND CHROMOSOME SORTING
Óscar Fornas Barcelona, Spain

Flow karyotyping was developed at 70’s to analyze human chromosomes. The strategy was based on their relative DNA content and base pair composition with a double DNA staining, using Hoechst 33258 and chromoyxin A3 to stain AT base pairs and CG base pairs respectively. During its evolution, some modifications were included to improve its resolution. Chromosome sorting has been used to study variations between human chromosomes, to detect chromosomal abnormalities, to map genes and to generate chromosome-specific libraries. This cytogenetic application can also be used to detect structural DNA variants such as large genomic deletions, translocations and copy-number variation on specific chromosomes when combined with FISH. However, two decades of whole genome sequencing and its amazing improvement of genomics field, has relegated it to as second division application. We have recovered bivariate flow karyotyping from the past to combine it with subsequent DNA sequencing, without amplification, by using the new MinION device from Oxford Nanopore sequencing technology as a new strategy to facilitate the assembly of complicated genomic. We propose this workflow as a potential solution to assemble structurally complex chromosomes, or the study of very large plant or animal genomes that might challenge traditional assembly strategies.
The assay can be used as a guide to predict response to anti PD-L1 directed therapies. This new experimental approach may be useful to improve existing immunohistochemical methods and more follow-up, as a vital part of patient safety.

Telomeres are DNA sequence repeats that cap chromosomes’ ends, providing protection and stabilization to genetic material. As cells go through somatic division, telomeres get shorter. With aging, an increased proportion of cells that went through several cycles of division and consequent telomere shortage accumulate and for this reason telomeres’ length become good surrogate for both chronological and biological aging.

By coupling the usage of a fluorescent probe complementary to the telomere DNA-sequence repeats with fluorescent antibodies, Flow FISH allows a high throughput analysis of the average telomere length of different cell subsets on heterogeneous cell suspensions. In this presentation, I will perform an overview on the implementation of the Flow FISH protocol in our lab, followed by our latest results regarding the evaluation of blood T cells relative telomere length in the context of multiple sclerosis.

FLOWFISH: ASSESSMENT OF RELATIVE TELOMERE LENGTH BY FLOW CYTOMETRY

Cláudia Nóbrega
Braga, Portugal

Telomeres are DNA sequence repeats that cap chromosomes’ ends, providing protection and stabilization to genetic material. As cells go through somatic division, telomeres get shorter. With aging, an increased proportion of cells that went through several cycles of division and consequent telomere shortage accumulate and for this reason telomeres’ length become good surrogate for both chronological and biological aging.

By coupling the usage of a fluorescent probe complementary to the telomere DNA-sequence repeats with fluorescent antibodies, Flow FISH allows a high throughput analysis of the average telomere length of different cell subsets on heterogeneous cell suspensions. In this presentation, I will perform an overview on the implementation of the Flow FISH protocol in our lab, followed by our latest results regarding the evaluation of blood T cells relative telomere length in the context of multiple sclerosis.

CYTOMICS IN IMMUNOTHERAPY TREATMENT DECISION-MAKING

Jordi Pétriz
Barcelona, Spain

Approximately 1.75 million patients globally suffer from blood cancer and many are in need of new treatment options. Among them, multiple myeloma (MM) is the second most common hematologic cancer, comprising 10–15% of all hematopoietic malignancies and causing 20% of all deaths from these diseases. MM is characterized by the accumulation of malignant plasma cells in the bone marrow (BM), constituting a critical microenvironment for the survival, expansion and chemoresistance of myeloma cells. Although new therapies have markedly improved the results in the treatment of MM, today remains incurable, but manageable once diagnosed.

Recent studies have shown that MM tumor cells play a critical role in resistance to chemotherapy, immunotherapy and radiotherapy, as they are significantly less refractory to these therapies than other cells. In addition, the presence of Myeloid-Derived Suppressor Cells (MDSC) in the microenvironment of BM in early stage MM contributes to local suppression of the immune responses through the PD-L1 / PD-1 pathway. MDSCs constitute a heterogeneous population that expands during cancer, inflammation and infection, playing a critical role in the progression of MM, being considered a therapeutic target for this disease.

The recent encouraging results from antibodies targeting programmed cell death protein 1 (PD-1) and B7 homolog 1 (B7H1, also known as PD-L1) for the treatment of various advanced human cancers show that immunomodulatory therapy has come of age. MEDI4736 is a human monoclonal antibody directed against PD-L1, which helps tumors avoid detection by the immune system. Tumor cells use PD-L1 to turn off the immune system just as it begins to mount a response against them. MEDI4736 helps turn the immune system back on, allowing it to continue its attack on cancer. Thalidomide, an immunomodulatory drug (IMiD), has improved the response rate and survival of patients with MM. Moreover, lenalidomide and pomalidomide, the second generation of IMiDs, have demonstrated even more potent anti-MM, anti-inflammatory and immunomodulatory activities than thalidomide. Although these new therapeutic approaches have improved MM clinical outcomes, most MM patients show drug resistance and eventually relapse.

The aim of this study was to develop an in-house cytometric assay that can be performed on PB/BM diagnostic samples. The assay can be used as a guide to predict response to anti PD-L1 directed therapies. This new experimental approach may be useful to improve existing immunohistochemical methods and more follow-up, as a vital part of patient safety.

EMPLOYING FLOW CYTOMETRY TO EXTRACELLULAR VESICLES POPULATION ANALYSIS

Bruno Costa Silva
Lisbon, Portugal

Extracellular Vesicles (EVs), membrane vesicles released by all cells, are emerging mediators of cell-cell communication. By carrying biomolecules from tissues to biofluids, EVs have attracted attention as non-invasive sources of clinical biomarkers in liquid biopsies. EVs-based liquid biopsies usually require EVs isolation before content analysis, which frequently increases sample volume requirements. We here present a Flow Cytometry (FC) strategy that does not require isolation or concentration of EVs prior to staining. By doing so, it enables population analysis of EVs in samples characterized by challenging small volumes, while reducing overall sample processing time. To illustrate its application, we performed longitudinal non-lethal population analysis of EVs in mouse plasma and in single-animal collections of murine vitreous humor. We also utilized it to monitor tumor-associated EVs populations in metastatic pancreatic cancer patients.

UNDERSTANDING CELL–NANOPARTICLE INTERACTION: A NEW GATEWAY TO DISEASE THERAPEUTICS

Sofia Antunes Costa Lima
Porto, Portugal

Nanoparticles and their interaction with human cells have been a focus of many groups during the past decade. The progress in the field of understanding and harnessing the interactions of nanoparticles with different cell types will be present and discuss. Nanotechnology and the hereby produced nanomaterials have promised to make use of specific properties of supramolecular assemblies and nanomaterials so that hitherto inaccessible effects can be exploited for new applications.

In biology and health, superparamagnetic iron oxide nanoparticles have been used for cell selection and as magnetic resonance imaging (MRI) contrast agents. Furthermore, uptake of nanoparticles into a wide variety of cells is an effect that seems to be specific for materials in the range of 50–200 nm. Surface modifications (positively or negatively charged side groups of the polymers, amino acids, or peptides/proteins) enhance this uptake. Knowledge about factors influencing cellular uptake, like size, surface properties, cell type, and endocytic pathways, enables optimization of labeling and selection of cells and nanoparticles for applications in vitro and in vivo. Here will focus on how nanoparticles can cross the biological barriers, namely gastrointestinal and skin using flow cytometric tools.
Obviously, to cover all the process, we need to analyse Non-conformities related to:
1. Test request, samples, and registration: mainly, the rates of rejected samples, but also incidences related with registration or other. In fact, the rate of samples processed with serious incidences is one of the best indicators for the performance of the processes.
2. Problems with reagents in the preanalytical phase: samples, reagents, instruments/ equipment, process of preparing, acquiring and analysing tubes.
3. Problems with the delivery of results and reports: for example, the time of response.
4. Rate of errors in technical processes (antibody staining, acquiring tubes in the flow cytometer) and other processes, like rates of errors in the elaboration of reports.
5. Time of response: Non-conformities related to the delivery of results and reports. For this, laboratories should fix the optimum turnaround times for results and reports in different assays. Respecting these times is recommended, as long as they are reasonable, acceptable, based on the characteristics of each assay or in the times used by similar laboratories or centres.

In conclusion, very simple: not too many indicators, but very focused ones are necessary instead, to make changes and decisions, and to get better information, based in properly registered data. In this approach I would consider the following as essential: percentage of rejected samples, rate of errors in registration, technical processes, reports, among others.
HOW TO ADAPT AND RISE TO A PANDEMIC

Lola Martinez Madrid, Spain

A core technology platform is by nature a multi-user environment where different members of the research community interact. As part of the work in a core lab users with different levels of experience come to get trained by the core staff. It is typical of the core lab to count with biosafety plans to ensure the work is carried out fulfilling biosafety standards and regulations but those plans are focus on the samples and reagents and how to manage them within the lab and what is the correct protocol to dispose of such samples according to their biological classification.

Early last year the Covid19 pandemic sent us all home as a lockdown was put in place into many countries worldwide and many core labs either closed down or drastically reduced their workload. To kept staff and users engaged many institutions developed online workshops, which were quite useful at the time and continue being good tools for our users. It was also the time to re-shape our biosafety plans to include the risk assessment of our own users as SARS-CoV-2 is an airborne transmitted virus as well as to change our cleaning and booking policies.

Upon the end of lockdown in early May we all start rolling back into work and core lab need it to reconfigure their spaces to cope with the new social distancing rules as well as kept with the staffing availability and room occupancy levels. Core instruments were relocated when possible to allow for their use complying with the recommendations from the health authorities on social distancing - usually core labs design follow many instruments on the same space which wasn’t the most practical approach under these new normality rules.

Another main point that core labs have to change their training activities to move them into the virtual world for which after the initial struggles in transitioning face-to-face into virtual training for which remote access tools and pre-recorded educational and training materials have prove a unique opportunity to advance their training program.”

BIOSAFETY GUIDELINES FOR THE MANAGEMENT OF POTENTIALLY BIOHAZARDOUS SAMPLES - SARS COV2

Óscar González Salamanca, Spain

The COVID-19 pandemic has showed that most of our laboratories weren’t prepared for working with samples suspicious of containing an airborne dangerous virus.

In this presentation we will review some aspects to consider when we must adapt our laboratories to this new situation and the recommendations to control the risk involved in the handling of SARS-CoV2 samples or suspicious of being contaminated with this incredibly spreadable virus.

We will go over all the hierarchy of risk controls, from the design of the laboratory, reviewing the characteristics of BSL2 and BSL3 labs, to the PPE that we should wear when it is impossible to eliminate completely the risks, taking special attention in the measures that we should take to reduce or eliminate the generation of aerosols.
CAR-T cells therapy and flow cytometry application

In this session, we will review the concept of cancer immunotherapy with special focus on the main T-cell redirecting strategies. We will then discuss the available biological and clinical data on state-of-the-art CAR T-cell approaches for B-cell malignancies including B-cell ALL, lymphomas and multiple myeloma, as well as T-cell malignancies, and acute myeloid leukemia. We will finally discuss current biological barriers to advance CAR T-cell therapies in solid tumors, and will finally propose the main research and innovation areas expected to advance the field over the next few years.

MONITORING CAR-T CELLS IN LYMPHOID MALIGNANCIES BY FLOW CYTOMETRY: TECHNICAL APPROACHES AND CLINICAL UTILITY

Introduction: CAR-T cells (chimeric antigen receptor-T) therapy is an innovative immunotherapy developed for the treatment of different malignancies including lymphomas and leukemias, even though clinical trials with B-cell malignancies are currently the most developed investigations, being CD19 the most explored target due to the high remission rates observed in treated patients (1). However, CAR-T cell expansion and persistence, after patient infusion, are critical factors to induce an efficient anti-tumor effect (2, 3), and flow cytometry becomes an essential tool for monitoring both in patients, being able to quantify the extent of CAR T cell expansion, and detect the presence of CAR T cells in peripheral blood (PB), bone marrow and cerebrospinal fluid (4, 5).

Methods and material: Flow cytometry use the capacity of the CAR molecule to bind its cognate antigen, coupled to a fluorochrome, to identify CART cells vs other immune cells. Based on that, an innovative universal CAR-T method of detection has been set up and validated to evaluate the expression of the functional CAR on the cell, in patients treated with different types of CAR-Ts cells aimed to CD19 and BCMA (patients= 70, samples= 640, CAR-T cells types= 7). This universal method of detection has been combined with the new tools that have been designed for detailed dissection of the different immune cell compartments in PB using automated 14-color 4-tube Next Generation Flow (NGF) approaches (6) and new spectral flow cytometers with >25 fluorescent detectors (Aurora, Cytek).

Results: This method offers a universal mean of detecting different types of commercial and academic CAR-Ts with the same target antigens and their combination with the 14 color 4-tube NGF approaches results in the identification of >250 leukocyte subsets in normal adult PB, including 85 subsets of CD4+ T-cells (e.g. 40 subsets of classical T helper cells, 25 distinct subpopulations of regulatory T-cells and 20 subsets of follicular T-helper cells with distinct functional roles), 48 subpopulations of CD8+ T- and NK-cells, 135 subsets of B-cells and plasma cells and 22 subpopulations of innate immune cells (www.EuroFlow.org) (6, 7), together with the detailed composition of the CAR T population. NGF has the added advantage (versus other methods) of allowing a detailed composition of the CAR T population (identified with the adapted EuroFlow approach), in a short time (3 - 4 hours).

Conclusion: This method would allow to identify and predict relapses after CAR-T cell treatments, in multiple myeloma and B-cell Hodgkin lymphoma patients. Besides, monitoring the CAR-Ts cells composition “ex vivo” contributes to understand the toxicity mechanism associated with CAR-T cells treatments and improve the clinical management of these patients.

Why do we need CAR-Ts?

José Mário Mariz Porto, Portugal

Written summary not available.
A single monoclonal antibody (TRBC1, clone JOVI-1) against one of two mutually exclusive T-cell receptor β chain constant region (TRBC) genes has been identified as a potential flow cytometry marker for clonality assessment. Our aim was to standardize the method for an appropriate routine use of anti-TRBC1 for clonality assessment and monitoring of clonal T cell subsets, to establish its distribution in normal T-cell subsets according to the expression of 24 different TCRVβ regions and to determine its sensitivity and specificity for detecting clonal T cells.

Methods: A total of 117 peripheral blood (PB) samples (76 from healthy donors (HD), 10 from reactive polyclonal lymphocytosis (RPL), 21 from T-cell neoplasms, 6 from reactive processes and 6 from other conditions) were analyzed by flow cytometry. TRBC1+ cells within different (normal) T-cell subsets - according to the expression of 24 different TCRVβ regions - and to cell populations, respectively. Conventional immunophenotyping approaches were also used to analyze the frequency of CD3+ T cells rearranged (at the DNA level) using fluorescence in situ hybridization (FISH). Purified TRBC1+ and TRBC1- populations rearranged (at the DNA level) TRB1 and TRB2 genes by PCR on TRBC1+ and TRBC1- FAC-sort cell populations, respectively. Conventional immunophenotyping approaches were also used to analyze the frequency of TRBC1+ cells within different (normal) T-cell subsets according to the expression of 24 different TCRVβ regions and to assess the sensitivity in detecting clonal cells - through real and virtual dilution experiments - and to validate it in T-CLPD.

Results: TRBC1 showed unspecific staining with high background in the absence of CD3, whereas TRBC1 labeling was significantly improved in the presence of CD3, particularly if the later antibody was added 10 min before addition of TRBC1 (independent of the CD3 clone and the fluorochrome). Purified TRBC1+ and TRBC1- populations rearranged (at the DNA level) TRB1 and TRB2 genes by PCR on TRBC1+ and TRBC1- FAC-sort cell populations. Dilution experiments of clonal cells in normal PB showed that the sensitivity level for detecting clonal T cells (±0.1% clustered events) was ±0.4 in 7/8 T-CLPD cases tested. In all 31 T-CLPD in which the approach was validated, monotypic (monoclonal) expression of TRBC1 was confirmed. Overall, the optimal TRBC1 staining is achieved when the antibody is added prior to CD3. Implementation of TRBC1 in flow cytometry is recommended as a fast, specific and accurate method for T-cell clonality assessment in diagnostic panels, as well as for detecting minimal (residual) disease, since a sensitivity level of ±0.1% can be reached.

CONFLICT OF INTEREST
No potential conflict of interest to report.

CONTACTS
noemimg@usal.es
No potential conflict of interest to report.

CONFLICT OF INTEREST

Mutational Profile and Immunophenotypic Changes in Bone Marrow Compartments of Chronic Myelomonocytic Leukemia Patients

AUTHORS
João Gaiao Santos1; Carla Barros Lima1; Margarida Couceiro1; Ana T. Simões1; Ana Lúcia Santos1; Patrícia Tomé1; Anaia Carvalho1; Manuela Fortuna1; Rui Bátora1; Marta Pereira1;4; Ana Azevedo1;4; Ana Bela Sarmento-Ribeiro1;4,5; Ana I. Cristóstomo4; Artur Palva1,4

AFFILIATION
1. Clinical Hematology, Coimbra University Hospital Centre, Coimbra, Portugal;
2. Coimbra Institute for Clinical and Biomedical Research, Group of Environment Genetics and Oncobiology, Coimbra, Portugal;
3. Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal;
4. Flow Cytometry Unit, Coimbra University Hospital Centre, Coimbra, Portugal;
5. Laboratory of Oncology and Hematology, University Clinic of Hematology, Faculty of Medicine of the University of Coimbra, Coimbra, Portugal;
6. Clinical Academic Center of Coimbra, Coimbra, Portugal

CONTACTS
joao.gaiao.santos@gmail.com

ABSTRACT
Introduction: Chronic Myelomonocytic Leukemia (CMML) is a heterogeneous disease, with overlapping features of myelodysplastic and myeloproliferative syndromes. Both immunophenotypic alterations and recurrent somatic mutations are found in CMML patients and can provide information on diagnosis and prognosis. We aimed to perform an immunophenotypic characterization of bone marrow compartments and its correlation with genetic alterations in a group of CMML patients (WHO2016).

Methods: Retrospective immunophenotypic analysis was performed according to EuroFlow panels and the Mean Fluorescence Intensity (MFI) from bone marrow (BM) granulocyte, monocyte and erythroblast compartments of CMML patients (n=47) and from a normal BM (healthy group HG, n=16) was recorded. In 33 patients, targeted gene sequencing of 45 genes was performed. In 19 patients, gene expression was analyzed by reverse transcription of the genes ASXL1, ZRSR2, DNMT3A, TET2, IDH1 and IDH2.

RESULTS
CMML patients were 70% male, median age 72y. WHO Classification: 42% CMML-0; 42% CMML-1; 16% CMML-2. FAB-Classification: 40% proliferative, 60% dysplastic. Mutations were identified in 57% of patients, with a median of 3 (0-7). ASXL1 (55%), TET2 (52%) and RAS pathway (22%) were the most frequently mutated genes. OPSS-Mol risk score was: 14% low; 20% int-1; 33% int-2; 33% high. Mutations in epigenetic modifiers genes alone (group A) were found in 21% and simultaneously with signal transduction genes (group B) in 36% of patients. Patients with mutated epigenetic modifiers had lower hemoglobin levels (p<0.05). We found an association between ASXL1 mutations and increased leukocyte count and between ASXL1 and RAS mutations with proliferative-CMML (p<0.05). Flow cytometry analysis of CMML BM revealed statistically significant differences in MFI in granulocyte (CD10, CD13, CD45), monocyte (CD11b, CD36, CD45, HLA-DR) and erythroid (CD45, CD105, CD117) maturation, compared with HG. Both groups A and B showed an increased MFI in CD45 granulocyte and CD36, CD45, HLA-DR in monocyte maturation when compared to HG and increased CD11b MFI in monocyte maturation on group B. Decreased MFI in CD10, CD13 in granulocyte and CD105, CD117 in erythroid maturation also occurred in both groups. The more marked changes found in erythroid maturation in group A patients could be related to their lower haemoglobin levels, but further studies are required. We found no differences in MFI in the analysed markers among WHO classification or OPSS-Mol Score groups.

Conclusion: In CMML, there seems to be a specific immunophenotypic expression pattern in granulocyte, monocyte and erythroid maturation. Contrary to the remaining BM BM, patients with mutations in epigenetic modifiers genes alone did not show a significant increase in CD11b expression in monocyte maturation. Detailed immunophenotyping of BM maturation compartments can further improve our understanding of CMML and help refine risk and prognosis classification.

CONFLICT OF INTEREST
No potential conflict of interest to report.

TITLE
Monitoring the Immunophenotype During Therapy with 5-Azacitidine May Assist in Redefining the Quality of Response in Patients with High-Risk MDS

AUTHORS
Subárd D1; Altan C2; Oelschlaegel U2; Porali A2; Psara K2; Westers T M1; Goebano N1; van de Loosdrecht A1; de Miguel D1

AFFILIATION
1. Flow Cytometry Unit, Department of Hematology, Hospital Universitario de Guadalajara, Guadalajara, Spain;
2. Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, Netherlands;
3. Medical Clinic and Policlinic I, University Hospital of TU Dresden, Dresden, Germany;
4. Department of Clinical Sciences, Division Oncology and Pathology, Lund University, Sweden;
5. Department of Immunology and Histocompatibility, Evangelismos Hospital, Athens, Greece;
6. Department of Hematology, Hospital Universitario de Guadalajara, Guadalajara, Spain

CONTACTS
dittoupearez@yahoo.es

ABSTRACT
Introduction: In patients diagnosed with high-risk myelodysplastic syndrome (MDS) multiparametric flow cytometry immunophenotyping (FCI) identifies multiple abnormalities in several bone marrow (BM) cell lineages. 5-Azacitidine (AZA) remains as the standard of care for MDS patients with need of therapy. The quality of response to AZA is based on complex definitions involving hematological, morphological and cytogenetic data. This study investigated whether monitoring the FCI findings after AZA might offer additional value over hematological information.

Methods: Five European Centers included 81 patients diagnosed with high-risk MDS (n=78) or chronic myelomonocytic leukemia (n=2) eligible for therapy with AZA. Each center processed its own BM samples and analyzed their FCI data comparing the findings in every single patient, before and after a median of 6 cycles of AZA (range 3-8 cycles). To normalize the results among centers, four possible definitions of FCI improvement were established based on the percentage and immunophenotype of the CD34+ myeloid cells, granulocytic and monocytic patterns of maturation, erythroid cells abnormalities, granularity of granulocytes and percentage of monocytes. To summarize the results from the FCI and hematological responses, a square graphical representation was designed: lower left (LL) position for no hematological improvement (HI)/no FCI improvement; upper left (UL) for cases with HI/no FCI improvement; upper right (UR) for HI/FCI improvement and lower right (LR) for no HI/FCI improvement.

RESULTS
A good correlation between the hematological and the FCI response was observed in 53/78 patients with available data: 28 (37%) had HI & FCI improvement (UR) and 24 (31%) showed neither HI nor FCI improvement (LL). Twenty-two patients (28%) only showed HI (UL) and 3 (4%) only showed FCI improvement (UR). This distribution was similar irrespective of eligibility for stem cell transplantation (SCT). In order to determine any correlation between the position in the square and duration of AZA therapy, an additional analysis was performed on 52 patients not eligible for SCT. After a median of 6 AZA cycles, the square distribution for patients who finally received a maximum of 12 cycles of AZA was 3, 5, 11 and 1, as compared to 16, 9, 5 and 2 for patients who received >12 cycles of AZA (P=0.01). Among patients who achieved a HI after 6 cycles of AZA, the probability of maintaining this response at 12 cycles of AZA was twice as large (67%) for those patients who also showed FCI improvement after 6 cycles of AZA as compared to patients who did not (33%, P<0.01).

Conclusion: The combination of the FCI data and the hematological response after AZA can help clinicians to identify those MDS patients with a higher probability of maintaining a good quality of response for a longer period of time. This would prevent patients from unnecessary side-effects and might benefit from alternative therapeutic regimens.
ABSTRACT

Introduction: An inflammatory profile was identified in acute SARS-CoV-2 infection with lymphopenia, neutrophilia, disruption of non-classical monocytes, increases in activated and exhausted phenotype of cytotoxic CD8+ T cells in addition to other parameters such as D-dimer, ferritin, serum Interleukine-6, lactate dehydrogenase. However, the dynamics of immunological parameter has not been studied in detail. The present work assess the recovery of these parameters at short-term.

Material and methods: A total of 51 patients with active Covid-19 disease were recruited at admission in our Hospital, and subsequently studied at 7, 30 and 60 days. Only 5 out of 51 were admitted in Intensive care Unit, while within remaining 46, only 27 did not require oxygen therapy. A wide multiparametric panel was designed to study both innate and adaptive immune parameters, after staining with monoclonal antibodies the samples were acquired in Navios EX (Beckman Coulter) flow cytometer.

Results: An inflammatory profile in our cohort was confirmed. At admission the lymphopenia was confirmed at day 7 and a significant recovery at 30 days was observed (median 1078 vs 1152 vs 1831 vs 1688 at 0, 7, 30 and 60 days respectively Kruskal-Wallis (KW) p=0.0006). Similarly, a significant decrease in the frequency of cytotoxic NK cells (CD56lowCD16++) at first month from admission (96.7 vs 94.1, U-Mann Whitney; p=0.042) was observed. Finally, a significant decrease below basal levels at 30 days was observed (13.4 vs 22.8 vs 6.3 vs 6.5; KW p<0.0001).

Discussion: This work shows a recovery of inflammatory parameters at 30 days after admission independently of clinical severity. To assess the recovery of the immunological parameters associated with clinical outcome, larger studies with some subpopulations of TCRgd and IgA2+ memory B-cells.

CONFLICT OF INTEREST

No potential conflict of interest to report.
Felipo-Benavent M.1; Martínez-Romero A.1; Rubio-Guerrri, C.2; O’Connor J. E.1

AFFILIATION
1. Unidad Mixta Laboratorio de Citómica, Dpto. de Bioquímica y Biología Molecular, Universidad de Valencia and Centro de Investigación Príncipe Felipe, Valencia, Spain;
2. Fundación Oceanogràfic de la Comunitat Valenciana, Valencia, Spain

CONTACTS felbanmar@gmail.com

ABSTRACT
Introduction: It is well known that many pathologies may alter immune or platelet functionality. Some infections trigger inflammatory processes that activate immune cells, while others, such as viral infections, can cause immunosuppression. Besides, weakening of the immune function can foster the appearance of other pathologies. If the pathology involves hemmorrhages or thrombocytopenia, we can also observe changes in the platelets function. On the other hand, stress is an important predisposing factor for immunosuppression. Furthermore, adrenaline is considered as a platelet agonist, so stress can lead to an enhancement of platelet function. Immune and platelet functions are not assessed in routine veterinary controls, and much less in marine mammals. However, applying flow cytometry (FCM) to monitor such parameters systematically may be of interest to detect diseases early, thus improving both prevention and monitoring.

Methods: Our group has adapted existing FCM protocols to assess phagocytic capacity (Ingoflow and Fagoflow Kits, Exbio), as well as developed in-house techniques to measure leukocyte bioenergetics, platelet activation and immature platelet levels in marine mammals. In the last years, blood samples of healthy animals were taken periodically to determine the physiological values of each parameter in several marine mammals species. When some animal displayed infections or hemostasia disorders, the immune and platelet functions have been evaluated with the indicated FCM assays, to detect possible alterations.

Results: We present several clinical cases that exemplify the efficacy of these FCM methods to detect alterations in immune or platelet function previously or during various diseases. Dolphins with acute or chronic respiratory or urinary infections presented an exaggerated activation of phagocytic cells compared to their companions. In contrast, a dolphin suffering a respiratory viral disease exhibited reduced phagocytic capacity, as is typical in certain virus infections. On the other hand, chronically stressed dolphins presented recurrent immunosuppression, hemorrhagic gastritis and a higher platelet activation comparing with the average. Furthermore, animals with slight to severe hemorrhage (gastrointestinal or bite wound) also presented active platelets and an increase of immature platelets level in blood. Interestingly, a routine examination detected immunosuppression in a dolphin that after a few days began to show symptoms of fungal infection.

Conclusion: The adapted FCM methods for immune and platelet monitoring are useful for the early diagnosis of certain diseases as well as for evaluating possible alterations derived from them in marine mammals. Mar Felipo-Benavent is the recipient of a Predoctoral Research Contract (ACIF) of the Generalitat Valenciana.

CONFLICT OF INTEREST
No potential conflict of interest to report.
ACUTE LEUKEMIA IN A 1 DAY-OLD NEWBORN

Dias, A. C.1; Couto, A. S.1; Marques, J. S.1; Caminha, I.1; Loureiro, J.1; Farinha, M. M.1; Cardoso, E.1

1. Department of Clinical Pathology, Centro Hospitalar Tondela-Viseu;
2. Department of Pediatrics, Centro Hospitalar Tondela-Viseu

Introduction: During the first year of age, the appearance of infant acute leukemia and transient abnormal myelopoesis is often associated with Down syndrome (DS). Transient abnormal myelopoesis (TAM) of DS occurs in approximately 10% of DS neonates and in phenotypically normal neonates with trisomy 21 mosaicism. This clonal disease characterized by immature megakaryoblasts is a preleukemic syndrome. TAM generally regresses spontaneously without any treatment within the first few months of life. However, some patients might need a low dose of chemotherapy to increase survival rate and prevent other morbidities like hepatic or multi-organ failure. Despite its typical transient nature, 20% to 30% of patients with TAM develop overt acute leukemia, usually within 3 years. We present a case of an acute leukemia in a 1 day-old newborn with a DS-like phenotype.

Methods: A 43-year-old caucasian woman, apparently healthy, presented to the emergency room of the hospital in labour. It had been an unknow and unattended pregnancy. The delivery was uneventful, and an aproximatly 37 week baby girl was born with DS phenotype. The complete blood count revealed a slight anemia with a high corpuscular volume, thrombocytopenia, and an elevated white blood cell count, with the presence of 20% blast cells. In the peripheral blood smear there were very basophilic blast cells, with cytoplastic blebs, nucleated red blood cells and megakaryocytic fragments. The remaining biochemistry revealed elevated uric acid and liver enzymes, with a markedly high LDH. The phenotypic study of peripheral blood by immunophenotyping and the karyotype were immediately sent to an external institution.

Results: The immunophenotyping report revealed the presence of 21.4% of blast cells, with an heterogeneous expression of CD38 and CD61. A low positive expression was observed for CD45, CD42a+CD61 and CD123. Partial positive expression in CD34, HLA-DR, CD117, CD7, CD36, CD71, CD33, CD38, CD42b, CD41B and CD9. CD56, with partial expression, was present as an aberrant marker. A negative expression was observed for CD13, CD16, CD10, cMPO, citoCD79a, CD19, CD3, citoCD34, CD35, CD14, CD330e, CD64, CD105, CD22, T1(NOD2), CD15, CD203c, CD205 and nTdT. From this it was asserted the presence of 21.4% of myeloid line blasts with maturation to the megakaryocytic line, suggestive of acute megakaryoblastic leukemia. The DS karyotype was confirmed.

Conclusion: Pregnancy surveillance has allowed for a drastic reduction in maternal, fetal and infant morbidity and mortality. Clinical pathology can play an important role in the monitoring of all the above stages, and its predictive to have trained and experienced professionals in detecting and alerting for urgent situations. While the reported case might prove to be a transient leukemia, vigilance of the newborn’s stability is still predictive, thus obliging the necessity of a very close follow-up.

CONFLICT OF INTEREST
No potential conflict of interest to report.
FLOWCt for Deconvolution of Large Immunophenotypic Datasets and Biomarker Discovery in Cancer Immunology

AUTHORS

Botta, Cefina1, Maia, Caterina1, García, Juan-José2, Terminus3, Rosalind4, Pérez, Cristina1, Manrique, Irene1, Burgos, Lai2, Zabaleta, Aitza2, Álvarez, Diego1, Savvides, Sara1, Puig, Noemí1, Cedenas, María-Teresa1, Ross1, Marín, Tassone1, Pietrafra, Gentile, Massimo1, Comella, Pierpaolo1, Bonello, Ivan1, Terpos, Evangelos1, Jelínčik, Tomas1, Palva, Artur2, Roccaro, Aldo2, Goltzschmidt, Hartmut1, Avei-Loseau1, Hervé1, Rosini, Laura5, Mataos, Maria-Victoria3, Martínez-López, Joaquín3, Lahuerta, Juan-José1, Blado, Joan1, San-Miguel, Jesús6, Paiva, Bruno7

AFFILIATION

1. Hematology Unit, Department of Oncology, “Ammunzata” Hospital of Cosenza, Italy
2. Clinica Università di Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369, Pamplona, Spain
3. Hospital Universitario de Salamanca Hematogia, Instituto de investigación biomédica de Salamanca (IBSAL), Salamanca, Spain
4. Hospital Universitario 12 de Octubre, Madrid, Spain
5. Clinical and Experimental Medicine Department, “Magna Graecia” University, Catanzaro, Italy
6. Medical Oncology Unit, Great Metropolitan Hospital “Himilia” of Riginio Catinia, Italy
7. Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
8. Department of Clinical Therapies, Alexander Gand Oncological Institute, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
9. Department of Haemat-oncology, University Hospital Ostrava, Ostrava, Czech Republic
10. Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
11. ASST Spedali Civili di Brescia, Brescia, Italy
12. Hospital Clinic, Barcelona, Spain
13. University Clinic Heidelberg, Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg, Germany
14. Hospital Universitario 12 de Octubre, Madrid, Spain

CONTACTS
jgarces@unav.es

ABSTRACT

Introduction: Large-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high-throughput approaches for single-cell analysis, but manual interpretation of multidimensional data poses a challenge to capture full cellular diversity and provide unbiased reporting.

Methods: We present FlowCt, a semi-automated workspace empowered to analyze large datasets that includes pre-processing, normalization, multiple dimensionality reduction techniques, automated clustering and predictive modeling tools. As a proof of concept, we used FlowCt to unbiasedly compare the T cell compartment in bone marrow (BM) vs peripheral blood (PB) of patients with smoldering multiple myeloma (MMM); identify minimally-invasive immune biomarkers of progression from smoldering to active MM; define prognostic T cell subsets in BM of active MM patients after treatment intensification; and determine the longitudinal effect of maintenance therapy in BM T cells. A total of 290 BM and PB samples from 250 patients were included in this study and those with active MM were treated according to the PHEMA/GEM2014-MM clinical trial.

Results: FlowCt starts by creating a matrix with expression data and follows with data quality control and normalization (e.g., gaussNorm, Harmony or canonical correlation analysis). Automated clustering can be performed using numerous methods (FlowSiM, Phenograph, PARCC or Seurat) before dimensionality reduction to visualize clusters’ identity before manual annotation (with FlowCt or using other flow cytometry software). Sub-clustering of a desired cell population can be iteratively performed. Different tests to evaluate statistical correlations or differences across groups as well as machine learning algorithms to predict outcomes are available in FlowCt. While performing an objective comparison of lymphocyte distribution in PB and BM of MMM patients, FlowCt enabled the identification of 25 T cell subsets including unique phenotypic and transcriptional states within the CD4 differentiation and polarization trajectories. By applying the gradient boosting algorithm to the datasets of patients with smoldering and active MM, we respectively identified prognostic T-cell signatures of malignant transformation (CD4+CD28negCD107+CD127, CD4+CD28+TIGIT+CD127+, CD4+CD28+TIGIT+CD127+CD25+, CD8+CD28negCD107+, CD8+CD28negCD107+CD25+ and CD8+CD28negCD107+CD127+CD25+), hazard ratio (HR) 7.33, P = 0.002 (HR) 7.60, P = 0.0022).

Conclusion: FlowCt is a new open-source computational approach that can be readily implemented by research laboratories to perform quality-control and analyze high-dimensional data, unveil cellular diversity and unbiasedly identify powerful biomarkers in large immune monitoring studies.

No potential conflict of interest to report.

CONFLICT OF INTEREST

No potential conflict of interest to report.

ORAL PRESENTATION | IMMUNOLOGY

OP.12

TITLE

URINE CYTOMETRY FOR NON-INVASIVE DIAGNOSTIC OF RENAL PATHOLOGY ASSOCIATED TO SYSTEMIC AUTOIMMUNE DISEASES

AUTHORS

Francisco Pérez-Cózar1, Catalina Bubiano1, Nieves Varela1, Juan Cruz Herrera2, María José Luque3, Concepción Fernández-Roldán4, Inmaculada Jiménez-Moleón5, José-Luis Cañelas6, Norberto Ortega7, Enrique Rey8, Marta E. Alarcón-Riquelme9, Concepción Marañón10

AFFILIATION

1. GENYO. Centro de Genómica e Investigación Oncológica Pfizer / Universidad de Granada / Junta de Andalucía, PTS Granada
2. Servicio de Medicina Interna, Unidad de Enfermedades Autoinmunes, Departamento de Medicina, Hospital Universitario de Granada, Granada, Spain
3. Servicio de Neumología, Hospital Universitario San Cecilio, P.T.S. Granada

CONTACTS

francisco.perez@genyo.es

ABSTRACT

Introduction: In systemic autoimmune diseases (SADs), nephritis is one of the most severe manifestations and it can only be assessed by renal biopsy. However, the invasiveness of this diagnostic technique makes it unsuitable for early detection of renal pathology or to monitor the response to treatment. Currently, the monitoring of renal inflammatory activity is carried out using serum and urinary analytical parameters that are neither very specific nor able to differentiate renal activity from chronicity. Therefore, there is a need to establish new biomarkers for patients at risk of suffering from renal pathologies associated to SADs. Renal pathologies associated to SADs are due to local immune response, and this may be reflected in the composition of the urinary sediment and the surface antigen expression profile of urinary exosomes. Therefore, urine can directly reflect the real-time inflammatory status of the kidney. Thus, this study aims to use urine as a potential non-invasive source of information about renal pathology associated with SADs.

Methods: Samples of urine from patients diagnosed with SADs were analysed. Six groups of diseases were included: systemic lupus erythematosus (SLE), Sjögren’s syndrome (SJS), rheumatoid arthritis (RA), scleroderma (SSc), primary anti-phospholipid syndrome (PAPS), mixed connective tissue disease (MCTD) and undifferentiated connective tissue disease (UCTD). We used flow cytometry to analyze the expression of 37 markers in surface of exosomes and to characterize the immune cells populations in the urine sediment.

Results: We found a significant increase of HLA-ABC, CD63 and CD105 expression in surface of exosomes from patients with nephritis compared to non-nephritis patients, as well as a higher expression of surface-exosomal marker CD105 in SLE and SJS patients with clinical parameters of renal damage. On the other hand, while migrant CD11b+ neutrophils were found increased in SLE patients, monocytes and CD4+ T cells were reported to be higher in SJS patients compared to controls. Finally, different populations of dendritic cells (DC), such as plasmacytoid DC and CD1c+ DC, were observed in the urine of SADs patients, and their numbers were significantly greater compared to healthy donors.

Conclusion: Results of this study showed that the differential expression of exosomal surface markers may be helpful in the diagnosis of nephritis in SADs patients and to stratify patients according to renal damage. During pathologic development, an infiltrate of immune cells populations occurs in the urine of these patients, consequence of the renal chronic inflammation processes that take place. Nevertheless, longitudinal studies with patients with renal involvement under treatment are needed to confirm the possible use of urine as source of information for the diagnosis of renal pathology associated to SADs.
IOP.01 CHARACTERIZATION OF INTRATUMORAL INNATE LYMPHOCYTE POPULATIONS
Margareta Correia Porto, Portugal

The immune system is classically divided into innate and adaptive. In the last decade, the family of innate lymphocytes has been growing. Besides natural killer (NK) cells, which are cytotoxic, it is now known that there are different subsets of so-called innate lymphoid (ILCs). ILC1s, ILC2s, ILC3s are mainly tissue resident and are cytokine producers per definition, mirroring their T helper counterparts from the adaptive system. ILCs are described to play important roles in immune responses against extracellular pathogens and tissue homoeostasis. However, their putative role in cancer remains poorly explored. Here we isolated immune cells from hepatocellular carcinoma (HCC) samples and analyzed intratumoral ILCs, with a particular focus on ILC3s, providing novel insights on their putative anti-tumoral immune responses.

IOP.02 UNRAVELLING THE BLADDER TUMOUR MICROENVIRONMENT USING THE FLOW CYTOMETRY TOOLBOX
Andreia Peixoto Porto, Portugal

Bladder cancer constitutes one of the deadliest genitourinary diseases, especially when diagnosed at late stages. These tumours harbour microenvironmental niches characterized by low levels of oxygen (hypoxia) and limited glucose supply due to poor vascularization. However, the synergic contribution of these features to disease development is poorly understood. This presentation focuses on the flow cytometry guided study of bladder cancer cells phenotypic changes promoted by hypoxia and glucose shortage. Accordingly, we demonstrated through Annexin V/PI-double-staining that bladder cancer cells are significantly plastic in adapting to microenvironmental changes in nutrient availability, resisting nutrient suppression as well as reoxygenation and restored access to glucose without triggering stress-induced apoptosis. Cell cycle analysis has confirmed a delay or arrest in S/G2 transition under microenvironmental pressure, which was consistent with reduced cell proliferation and chemoresistance in vitro. Glycomics and FACS analysis have confirmed a major antagonization of O-glycosylation pathways, leading to simple cell glycophenotypes characterized by the accumulation of immature short-chain O-glycans at the cell surface. Glycoengineered models reflecting simple cell glycophenotypes were developed and validated by FACS. Functional studies in vitro and in vivo showed that Tn and STn short-chain O-glycans overexpression decreased proliferation and promoted chemoresistance, reinforcing their close link with tumour aggressiveness. Collectively, flow cytometry approaches have contributed to the demonstration that hypoxia and glucose deprivation trigger more aggressive cell phenotypes, promoting what appears to be an escape mechanism from microenvironmental stress. We propose that, altered glycosylation may be used to target these subpopulations, paving the way for precision oncology.

IOP.03 THE APPLICATION OF FLOW CYTOMETRY IN TESTING NEW THERAPEUTIC STRATEGIES IN PRECLINICAL IN VIVO MODELS
Carlos Palmeira Porto, Portugal

Over the last decade, based on a growing understanding of cancer biology and an extensive development of preclinical animal models and clinical trials, the efficacy and mechanisms of immunotherapy have been fully explored. Significant and lasting clinical response with Immunotherapy provide a new breakthrough treatment for a variety of refractory cancers. Among the different types of cancer Immunotherapy strategies, Immune-Checkpoint Inhibitors (ICIs) are one of the most studied and used in the clinic.

Although Immune-Checkpoint inhibitors drugs are promising for achieving longer-term efficacy, the frequency of patients reaching these types of response is very low. Most of patients do not respond or inevitably develop resistance to treatment after a period. And this resistance may occur through different and complex mechanisms.

It is therefore necessary to develop new therapeutic strategies, namely by combining immunotherapies with therapies that target cancer cells but stimulate the immune system. The idea that these therapies can stimulate the immune system is because when they targeted tumour cells, they cause apoptosis and necrosis of these cells, leading to the release of tumour antigens. This tumor cell death is associated to an acute inflammatory response that has been proven to enhance the immune response.

Two of these therapies are Photodynamic therapy (PDT) and Interstitial Laser Thermotherapy (ImILT). However, the synergistic effect of these therapies and immunomodulator therapy (like Immune-checkpoint Inhibitors) has not been investigated, and therefore, the aim of this project is to evaluate the combination effect of these therapies with anti-PD-1 and anti-CTLA-4 therapies, according to treatment response. In this preclinical model, female C57BL/6J mice, inoculated with a mouse melanoma cell line, B16F10, are used. This tumour cell line was chosen because it is poorly immunogenic and we intend to evaluate the possibility of reversing this characteristic with combination therapies.

Here some of the preliminary results obtained by flow cytometry analysis are presented. So far, when therapies were combined it was observed: an increase in cytotoxic T cells, with an activation phenotype and some memory phenotype; and a decrease in regulatory T cells, i.e. immunosuppressive cells. These results suggest that the synergistic effect of these therapies allows a local immune response, and this can make it possible to reverse the poor immunogenic feature of this tumour model.

IOP.04 THE POTENTIAL OF EXTRACELLULAR VESICLES CARGO AS MOLECULAR BIOMARKERS FOR CLEAR CELL RENAL CARCINOMA PATIENT’S MANAGEMENT
Francisca Dias Porto, Portugal

The definition of molecular biomarkers of cancer recurrence is essential to do a more precise and individualized patients’ follow-up. The advantages of studying the extracellular vesicles content for cancer patient’s management and as a mirror of the tumor microenvironment is an opportunity for a more accurate patients’ stratification using minimally invasive methods, such as liquid biopsies. This lecture explores the applicability of the mRNA and miRNA content of plasmatic EVs from clear cell Renal Cell Carcinoma patients as new prognostic biomarkers.
A RAPID FLOW VIROMETRIC TEST FOR DETECTION OF SARS-COV-2 PARTICLES

Authors: Rico L.G.1; Ward M.D.1; Bradford J.A.2; Juncà J.1; Sorigué M.1; Lorca-Oró C.1; Vergara-Alert J.1; Abad F.X.1; Petriz J.1

Affiliation: 1. Josep Carreras Leukaemia Research Institute (JCLI), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain; 2. Thermo Fisher Scientific, Eugene, Oregon, USA; 3. IRTA-CReSA, Centre de Recerca en Santitat Animal . Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Contacts: lgarcia@carrerasresearch.org

Abstract: No potential conflict of interest to report. No potential conflict of interest to report.

Introduction: Coronavirus disease 2019 (COVID-19), caused by infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is a major health issue declared as pandemic in March 2020. The early detection of infection is essential to minimize the magnitude of widespread disease dissemination. According to the World Health Organization (WHO), the gold standard method to detect SARS-CoV-2 is RT-qPCR. Rapid Antigen Detection (RAD) test is less time consuming and has less sensitivity. In this study, we have developed a rapid and sensitive flow virometric assay aimed at SARS-CoV-2 detection, based on RNA staining, global protein content and light scatter properties of virus particles.

Methods: SARS-CoV-2 virus particles were obtained from the supernatant of infected Vero E6 cells under High biocontainment (IRTA-CReSA ABSL3 facilities). As a negative control, supernatants of non-infected Vero E6 cells were used. Clarified supernatants were inactivated with 4% paraformaldehyde and 1% glutaraldehyde to get better particle structure preservation. Samples were stained with Hoechst 33342 (DNA), Pyronin Y (RNA) and FITC (global protein) for 15min at 4ºC, protected from light. Negative and positive controls were acquired and analyzed on the Attune™ NxT Flow Cytometer (Thermo Fisher).

Results: Small particle analysis of supernatants obtained from non-infected Vero E6 cells showed no signal for RNA. Samples containing virus particles showed specific signal for Pyronin Y. RNA/FITC positive particles were negative for Hoechst 33342, showing light scatter properties compatible with viral particles of sizes less than 200 nm. The S protein of SARS-CoV-2 was confirmed after staining with anti-SARS-CoV-2 spike protein recombinant human monoclonal antibody (Thermo Fisher).

Conclusion: This flow virometric assay can be used as a potential method to detect RNA viruses. It allows the rapid detection of viral particles and shows high sensitivity and specificity, and can be used complementary with any other technique for virus detection, such as RT-PCR and RAD methods. The combination with fluorescent monoclonal antibodies against SARS-CoV-2 spike glycoprotein will help to confirm or rule out the specific detection of the virus. Furthermore, the implementation of this flow virometric method will allow early detection of infection by running rapid high throughput analysis of a large scale of population groups, necessary to detect the presence of asymptomatic individuals.

DETECTION OF EXOSOMES BY CONVENTIONAL FLOW CYTOMETRY: PROTOCOL OPTIMIZATION

Authors: Mafalda Barros1; Susana Cunha2; Anabela C. Areias1; Paula Ludovico2; Bélêm Sampaio-Marques1

Affiliation: 1. Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Guimarães, 4710-057 Braga, Portugal; 2. - PT Government Associate Laboratory, Braga/Guimarães, Portugal

Contacts: mafaldabarros1998@gmail.com

Abstract: No potential conflict of interest to report. No potential conflict of interest to report.

Introduction: The study of extracellular vesicles, in particular exosomes, in the context of disease biomarkers has become increasingly relevant in many fields. Exosomes are membrane-enclosed micro- and nano-sized vesicles containing bioactive molecules that can carry and transfer molecular messages. Their lipid bilayer membrane confers stability and prevents their cargo - DNA, messenger RNA (mRNA), microRNA (miRNA), proteins, cytokines – from degradation during the circulation throughout biological fluids (such as blood, urine, and saliva). Exosomes play an important role in cell-to-cell communication, influencing both physiological and pathological processes. Exosomes can either be up-taken by neighbouring recipient cells, where they release their content, or can navigate through the body to reach distant organs. Thus, exosomes allow us to indirectly detect signs of changes in cellular function by studying easily obtained samples such as peripheral blood. The aim of this work was to optimize a protocol to detect exosomes by conventional flow cytometry.

Methods: Through a sequential ultracentrifugation, we isolate exosomes secreted by AML cell line models – HL-60, NB-4 and KG-1. After, a physical characterization was performed by nanoparticle tracking analysis (NTA), to confirm the vesicles size and concentration. Next, using these samples we applied a strategy to detect exosomes by conventional flow cytometry. For that, we stained the exosomes with the surface markers CD38 and CD73 by cell sorting, followed by immunoblotting analysis, to confirm the presence of vesicles.

Results and conclusion: Herein, we present a conventional flow cytometry to analyse extracellular vesicle, particularly exosomes. This research was funded by FEDER and Foundation for Science and Technology (FCT), grant number POCI-01-0145-FEDER-028159 and POCI-01-0145-FEDER-030782 BSM and A.C.A were founded by FCT, grants number DL 57/2016 and POCI-01-0145-FEDER-028159, respectively. Conflicts of Interest: The authors declare no conflict of interest.
Flow cytometry as a tool to characterize an engineered 3D in vitro model of acute myeloid leukemia

Inês Lameira1; Cristina Martins1; Belém Sampaio-Marques1; Paula Ludovico1; Anabela C. Areias1

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho

pgl0082@alunos.uminho.pt

Methods: Briefly, cell laden collagen type I hydrogels were used to culture individually or simultaneously, HL-60 cells, a widely used AML cell line, and mesenchymal stem cells. As control, gold standard 2D cultures were used. At different time-points (3 and 6 days), engineered constructs were enzymatically digested with collagenase to liberate the cells. Flow cytometry was used to characterize cell viability (Annexin/Propidium iodide (PI) staining), cell cycle (PI), and mesenchymal stem cell differentiation (surface markers CD73, D90, CD105, lack of expression of CD34 and CD45). Morphological characterization was performed by confocal microscopy.

Results: Our results showed that culturing cells in the 3D engineered system does not compromise cell viability when compared to controls. The percentage of necrotic, late apoptotic, early apoptotic and healthy cells was not significantly different between controls and 3D cultures at day 3 and 6. Furthermore, cell cycle showed no significantly differences between controls and 3D cultures at day 3. However, while in controls at day 6 the percentage of cells in G1 phase increased, in the hydrogel this percentage was similar for both time-points. Furthermore, engineered 3D system seems to promote the formation of leukemia cells colonies without any additional stimuli.

No potential conflict of interest to report.

Resolving scattered anisotropic particles in flow cytometry

Christian Goerke1; Hussels M.1; Hoppe A.1; Gienger J.1; Putz A.1 Grosenick D.1

Biomedical Optics, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany

CONTACTS Christian.Goerke@ptb.de

Introduction: Imaging flow cytometry combines the high information content of microscopic images with the high throughput of flow cytometry. Possible applications include the diagnosis of acute myeloid and lymphoid leukemia in immunophenotyping, detection of rare circulating tumor cells (CTC) in liquid biopsy, or analysis of morphological cell changes like mitoses. The discrimination of single cells, coincidences, and agglomerates presents a challenge in common flow cytometry. Counting rare blood cells like CTCs in whole blood significantly raises the chance for counting errors due to coincidences. We overcome this challenge by expanding a laser flow cytometer with multi-dimensional imaging capabilities to improve the discrimination of above events and thus the precision of cell concentration measurements. Our goal is to develop a new reference method to support external quality assurance, thereby enhancing the precision, reproducibility, and comparability of clinical measurements. Our method facilitates personalized medicine - ultimately saving lives.

Methods: Our setup consists of two lasers with wavelengths of 406 nm and 488 nm. After elliptical shaping, they are focused into a flow cell. The sample is delivered by a motorized syringe pump. We detect light scatter in forward (FSC) and sideward (SSC) direction, and six fluorescence signals with photomultiplier tubes (PMT). Two additional industrial CMOS cameras capture images of the SSC's spatial distribution and fluorescence, and of the FSC's angular distribution (Fourier plane). A beam stop blocks the laser beams in forward direction. The 488 nm laser is vertically offset to act as a trigger for the cameras and the probe laser, where the trigger window is set on one of the PMT signals. Each signal within the lower and upper limit of the trigger window generates a trigger signal. The camera is triggered directly, whereas the probe laser triggers with a configurable time delay (us) and duration (ns) to account for the flow speed. This way, although the cameras' exposure times of >60 μs exceed the laser-object interaction time, sharp images are generated. Numerical simulations of the generalized Lorenz-Mie scattering theory and simulated imaging accompany the measurements to support data interpretation.

Results: From the fluorescence images, we can directly access particle dimensions such as diameter and count all visible objects. The angular-resolved FSC and spatial-resolved SSC signals create specific structures, which we can compare with the simulations, e.g. to analyze the geometry of agglomerates. This way, we can efficiently differentiate single cells from agglomerates and coincidences.

Conclusion: We have successfully shown the capability of industrial CMOS cameras to produce FSC, SSC, and fluorescence images. Our setup enhances a conventional laser flow cytometer with the possibility of multi-dimensional imaging of objects to improve the counting accuracy of cell concentration measurements.

No potential conflict of interest to report.
Intravascular large B cell lymphoma (IVLBCL) is a rare and aggressive subtype of extranodal lymphoma in which the proliferation of neoplastic cells occurs almost exclusively within the lumen of capillaries. There are three main variants: classic, cutaneous and associated with hemophagocytic syndrome (HPS).

Methods: Presentation and discussion of a clinical case.

Results: A 37-year-old woman without relevant personal and family medical history was referred to our hematology consultation in April 2020 with B symptoms, cytopenia and splenomegaly. Blood tests revealed normocytic normochromic anemia with hemoglobin (Hb) 8.3g/dL, platelets 90x10^9/L, monocytes 0.97x10^9/L, ferritin 1114ng/mL (normal: 15-150) and C-reactive protein (CRP) 6.1mg/dL (normal: <0.5). The peripheral blood (PB) smear was normal. Infections and autoimmune diseases were exhaustively excluded. CT scan showed splenomegaly of 26cm. PB and bone marrow (BM) flow cytometry (FCM) ruled out acute leukemia and lymphoproliferative disorders. The BM aspirate and biopsy revealed only a marked hypercellularity. Meanwhile, the patient experienced clinical and analytical worsening with Hb 6.3g/dL, platelets 90x10^9/L, monocytes 6.25x10^9/L, LDH 857U/L, ferritin 4010ng/mL, triglycerides 438mg/dL (normal: <150). A second BM evaluation revealed reactive plasmacytosis and diagnostic splenectomy showed reactive red pulp hyperplasia. To confirm/make autoimmune lymphoproliferative syndrome and HPS, a PB cytometry was performed, which showed increased αβ⁺ CD4⁺CD8⁻ T-cells (7.0% of all T cells), T cell activation, sharp expansion of pro-inflammatory (CD14⁺CD16⁻+) monocytes (63% of monocytes), and a marked elevation of plasma IL-10. NGS for gene mutations in FAS, FASLG and CASP10 was negative. In July 2020, large aberrant, likely activated monocytes/macrophages, were observed in the PB film. At this point, new BM and PB FCM studies confirmed the expansion of pro-inflammatory monocytes and revealed, for the first time, rare large B cells with aberrant immunophenotype and DNA aneuploidy (0.3% leukocytes). Positive markers: CD14dim, CD5, CD19, CD20bright, CD33dim, CD38dim, CD45bright, CD86, FMTC, HLA-DRbright. Negative markers: CD10, CD15, CD23, CD25, CD34, CD56, CD79b, CD95, CD138, CD200, and immunoglobulin light chains. CT scan showed massive hepatomegaly. IVLBCL was later diagnosed by histological assessment of liver biopsy. The patient started chemotherapy with R-CHOP.

Conclusion: This case highlights the glitches associated with IVLBCL diagnosis, which are related to its rarity, poorly understood pathophysiology and highly heterogeneous presentation, and emphasizes the vital role of FCM in identifying the neoplastic B cells and confirming macrophage activation. Increased plasma IL-10 levels found in IVLBCL have been attributed to IL-10 production by neoplastic B cells.
ABSTRACT

Introduction: In the last months it has been noted the need for improved specificity and sensitivity in classic serological techniques. In this regard, flow cytometry (FCM) represent a promising tool, since it allows the detection of antibodies against the native and functional S-protein of SARS-Cov-2 exposed into the membrane of a transfected cell line, simulating the physiological conditions.

Methods: Analysis of 50 samples from qPCR+ patients, gathered between November-December, 2020 and 50 pre-pandemic samples (negative controls) collected between May-June, 2019. Median time elapsed from first qPCR+ was 249 days (range 220-271). Samples were also tested by a commercial chemiluminescence immunoassay (CLIA). Finally, we performed a functional analysis for the assessment of neutralizing antibodies. We have based our technique on the one described by Horndler et al.12. For each individual test, we used a mixture of 25% of wild type Jurkat cells and 75% of transfected Jurkat cells (S-Jurkat), expressing the S-protein and EGFR (as control of transfection) for the study of the presence of polyyclonal antibodies against the S-protein. The samples were acquired in an Omnicyt flow cytometer (Cytognos,S.L). IgG and/or IgA antibodies specifically bound to S-proteins were identified through the comparison of the median fluorescence intensity (MFI) of the S-Jurkat and the wild type Jurkat cells in each sample. Besides, we studied the correlation between the expression of IgG/EGFR and IgA/EGFR using a linear regression analysis. All the experiments were analyzed using the Infinicyt 2.0 software (Cytognos,S.L.).

Results: MFI-ratio in pre-pandemic and SARS-CoV-2 samples Pre-pandemic samples showed an IgG-MFI ratio of 1.18 (95%CI 0.96 to 1.40) and IgA-MFI ratio of 1.12 (95%CI 1.0 to 1.35). It was not observed a significant linear correlation between IgG/EGFR and IgA/EGFR. (R2 0.1). All samples of PCR+ patients showed an IgG-MFI ratio ≥ 1.4 (mean= 4.12, range= 1.5-7.11) and positive IgG/EGFR correlation, thus were considered anti-S/IgG+. IgA was positive in 88% (44/50) of the samples (IgA-MFI ratio ≥1.35; mean= 2.30, range= 1.5-7.8) using the MFI ratio method. Comparison with CLIA and functional analysis for the assessment of neutralizing antibodies. We have based our technique on the one described by Horndler et al.12. For each individual test, we used a mixture of 25% of wild type Jurkat cells and 75% of transfected Jurkat cells (S-Jurkat), expressing the S-protein and EGFR (as control of transfection) for the study of the presence of polyyclonal antibodies against the S-protein. The samples were acquired in an Omnicyt flow cytometer (Cytognos,S.L). IgG and/or IgA antibodies specifically bound to S-proteins were identified through the comparison of the median fluorescence intensity (MFI) of the S-Jurkat and the wild type Jurkat cells in each sample. Besides, we studied the correlation between the expression of IgG/EGFR and IgA/EGFR using a linear regression analysis. All the experiments were analyzed using the Infinicyt 2.0 software (Cytognos,S.L.).

Conclusion: This strategy confirms that FCM is a highly specific and sensitive technique for the detection of neutralizing antibodies against SARS-CoV-2. FCM constitutes a promising tool to look at long-term protective humoral immune response in cases where antibody levels were predictably low, as in the long-term monitoring of asymptomatic patients, immunosuppressed individuals, or elderly patients.
Angioimmunoblastic T-cell lymphoma (AITL) is a neoplasm of mature T follicular helper (TFH) cells that accounts for 1-2% of all non-Hodgkin lymphomas. AITL is a very aggressive disease and diagnosis requires positive immunostaining for at least 2 of the following 7 antigens: CD10/BCL6/PD1/CXCL13/CXCR5/ICOS/IAP and immunophenotypic abberancies of pan-T markers. In a few cases, the diagnosis remains challenging by morphology and immunohistochemistry (IHC), and multiparameter flow cytometry (MFC) can be useful as it is a sensitive procedure that allows identifying small populations of aberrant T-cells in a background of reactive and inflammatory cells.

Methods: In this review, we describe three cases with confirmatory diagnosis of AITL by MFC, morphology and IHC (cases 1-3), and two cases (4 and 5) with immunophenotype suggestive of AITL by MFC, but discordant by IHC. MFC was performed with FACSCanto II (BD Biosciences) through InFlux™ software (Cytoytox) and it was based in Euroflow protocol.

Results: In our case series, the three AITL confirmatory diagnosis present CD3−CD4+ pathologic T-cells, showing the utility of CD3−CD4+ gate. In this way, in case 1, a population of T-cells with aberrant immunophenotype sCD3−CD4+ was detected in PB and LN. Case 2 shows versatility of MFC and utility of CD3−CD4+ gate, when this approach allowed to detect AITL lymphocytes in various samples such as LN, AF and BM. Case 3 proved that FC is also useful in the follow-up, since at diagnosis it detected 1.5% of aberrant T-cells in BM, and it showed subsequent relapses. Regarding CD10 expression, case 1 did not express CD10, case 2 showed dim CD10 expression and case 3 had bright CD10 expression. CD10 expression by FC has a high sensitivity, but it’s less specific to differential diagnosis from other PTCL. Histologically, several cases of AITL may mimic Hodgkin lymphoma. For instance, in case 4, MFC in LN, PB and BM was suggestive of AITL. However, the diagnosis was challenging by histology, finally concluding Hodgkin lymphoma. Similarly, there are cases of AITL that show a reactive hyperplasia pattern and may be misinterpreted as a benign process. In case 5, MFC detected clearly a 1.8% of aberrant lymphocytes suggestive of AITL and the patient had skin rash, eosinophilia and lymphadenopathy. Histological diagnosis suggested dermatopathic lymphadenopathy, and unfortunately the patient died in another institution by disease progression without treatment.

Conclusion: We emphasize the useful and versatility provided by MFC for the immunophenotypic diagnosis of AITL in different samples and with a high sensitivity in detecting aberrant T-cells population, even if this population represents a low percentage of the total cellularity. Our experience show that histological confirmation is not easily achieved in several cases and in this way, MFC is a fast, reproducible and highly sensitive tool.
Primary mediastinal large B-cell lymphoma (PMLBCL) is an uncommon lymphoma that represents 6-10% of all diffuse large B-cell lymphomas. It typically manifests with a bulky anterior mediastinal mass with a local invasion tendency leading to compression symptoms. Although PMLBCL is a distinct clinicopathological entity in the WHO classification of lymphoid malignancies, its features can overlap with thymic neoplasms and other B-cell lymphomas. In many cases, diagnosis is delayed by the challenge to obtain representative biopsy samples.

Methods: We describe a case of PMLBCL, in which flow cytometry (FCM) made an important contribution to the diagnosis.

Results: A 25 years-old man presented with a 1-month history of asthenia and tiredness associated with episodes of chest pain radiated to the back that worsened with inspiration and cough and improved by leaning forward. In the previous two weeks, he also had an engorged neck and dry cough. Physical examination showed jugular vein distention, tachycardia, hypochononic heart sounds and vesicular breath sounds. There were no peripheral adenopathies, hepatomegaly, or splenomegaly. Chest computed tomography (CT) scan revealed an anterior mediastinal mass (8.1x7.6x11.1cm) with compression of the left brachiocephalic and superior cava veins. There were several small pulmonary nodules up to 2 cm in size, and a nonspecific nodular image with 3 cm in diameter in the liver. Endobronchial ultrasound-guided transbronchial needle aspiration of the mediastinal mass gave inadequate material for cytological analysis. However, FCM identified 1% of large abnormal B-cells, which were positive for CD19, CD20high, CD10low, CD23high, CD38low, CD79high, CD81high, CD200high, FMC7high, CD30low, CD3low, CD38low, CD5low, CD23low, and kappa light chains and negative for CD5, CD25, CD30, CD38, and high suspicion of PMLBCL. Then, a core biopsy was performed, and histopathological examination showed diffuse proliferation of large B-cells with abundant cytoplasm, oval to irregular nuclei with distinct nucleoli, associated with sclerosis, thereby confirming the diagnosis. After 6 months of R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone), the patient achieved clinical remission. CT showed densification in the pre-vascular space, but no adenomegalias or other relevant findings. Treatment proceeded with consolidation radiotherapy. After one month, there were no hypermetabolic changes in the positron emission tomography.

Conclusion: PMLBCL represents about 10% of all mediastinal neoplasms in adults, but the only way to differentiate it from the others is through the immunophenotype and histological evaluation. This case illustrates the importance of acquiring representative sampling to diagnosis mediastinal masses. With a thorough sample of the mass, FCM was able to identify rare neoplastic B cells with immunophenotypic features typically observed in PMLBCL. The adequate treatment was initiated, allowing the patient to recover.
TITLE
T CELL PROLYMPHOCYTIC LEUKEMIA DIAGNOSED IN THE PRECLINICAL PHASE BY FLOW CYTOMETRY: THREE CLINICAL CASES

AUTHORS
Bianca Castro1; João Rodrigues1,2; Filipa Santos1; Ana Helena Santos1,3; Sofia Fonseca1,2; Luítes Oliveira1,2,3; Marlene Santos1,2,3; Marta Gonçalves1,2; Vânia Ventura1; Renata Cabral1; Cristina Gonçalves4; Julia Vasconcelos1,2; Esméralda Neves1,2; Catarina Laut1,2,3; Maria dos Anjos Teixeira1,2,3; Margarida Lima1,2,3

AFFILIATION
1. Serviço de Hematologia Clínica, Centro Hospitalar Universitário do Porto;
2. Laboratório de Genética, Unidade de Diagnóstico Hematológico, Serviço de Hematologia Clínica, Centro Hospitalar Universitário do Porto;
3. Laboratório de Citometria, Unidade de Diagnóstico Hematológico, Serviço de Hematologia Clínica, Centro Hospitalar Universitário do Porto;
4. Serviço de Imunologia, Centro Hospitalar Universitário do Porto;
5. Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal.

CONTACTS
bianca.castro@campus.ulis.pt

ABSTRACT
Introduction: T cell Prolymphocytic Leukemia (T-PLL) is a rare and clinically aggressive lymphoproliferative disorder. Most patients are adults and have advanced disease, with marked lymphocytosis, cytopenias, adenopathies, hepatosplenomegaly and, sometimes, skin lesions and serious effusions. The small cell T-PLL variant has better prognosis. Flow cytometry (FCM) is important for diagnosis. Most cases are CD4+CD8-, some are CD4+CD8+, and few are CD4-CD8+. TCL1 expression is usually observed, because most common genetic alterations involve chromosome 14 (14q23).1, conditioning activation of the TCL1 proto-oncogene; deletions or inactivating mutations of the tumor suppressor ATM gene (11q22.3) may also occur. Ataxia telangiectasia (AT) is a rare primary immunodeficiency resulting from germline biallelic ATM mutations, causing genome instability. Secondary genetic events, such as TCL1 rearrangements, are frequent in AT patients. These patients have neuronal degeneration, immunological abnormalities, and increased risk of developing cancers, including T-PLL. We describe three patients with T-PLL diagnosed in the preclinical phase, two of them with AT.

Methods: Clinical and analytic evaluation of three cases of T-PLL diagnosed pre-clinically, including blood counts, lymphocyte morphology, T cell immunophenotyping by FCM, TCRB rearrangements by PCR, and cytogenetic analysis by FISH.

Results: One patient (male, 59 years-old) was referred by lymphocytosis diagnosed in routine blood analysis, and two patients (one female and one male, 24 and 27 years-old), were referred for lymphocytosis by immunophenotyping as part of the routine monitoring of a previously diagnosed AT, with biallelic ATM mutations. FCM allowed for diagnosis of T-PLL: the abnormal T cells were positive for CD2low, CD3, CD8high, CD117+, CD28, and TCL1, among others; one case was CD4+CD8+ and two cases (both with AT) were CD4+CD8+/-low. TCL1 morphology was compatible with small cell variant T-PLL. All patients had TCL1 rearrangements and the non-AT patient had del11q22.3. At physical examination, none of the patients had adenopathy, splenomegaly, hepatomegaly or serious effusions. Both AT patients had cerebellar ataxia and cutaneous-mucous telangiectasias, and one had a history of recurrent infections. Blood counts were normal in AT cases and revealed slight lymphocytosis in the non-AT patient. Lactate dehydrogenase and B2-microglobulin were normal. AT patients had increased alpha-fetoprotein. After a median follow-up of 19 months, both AT patients remain stable, without disease manifestations and the non-AT patient experienced disease progression in 16 months, needing for treatment with alemtuzumab (19 months).

Conclusion: These cases highlight the problems associated with T-PLL diagnosis in the preclinical phase, needs of disease monitoring and concerns in deciding the best time to start treatment, which in AT patients poses additional challenges due to the risk of toxicities.

CONFLICT OF INTEREST
No potential conflict of interest to report.

TITLE
CLONAL CIRCULATING PLASMA CELLS - WHEN THE DIAGNOSTIC CRITERIA FOR PLASMA CELL LEUKEMIA ARE NOT MET

AUTHORS
Joana Oliveira1; José Pereira2; Ana Pires3; Carlos Palmeira4; Emília Sousa5; Inês Godinho6; Carla Azevedo6; Bruno Fernandes1; Cláudia Moreira7; Mário Mariz8; Gabriela Martins8

AFFILIATION
1. Clinical Hematology Department, Hospital do Divino Espírito Santo de Ponta Delgada, Ponta Delgada, Portugal;
2. Immunology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal;
3. Onco-Hematology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal;

CONTACTS
Joana_cp Oliveira@hotmail.com

ABSTRACT
Introduction: Plasma Cell Leukemia (PCL) is an aggressive plasma cell (PC) disorder characterized by the presence of clonal PC >20% of leukocytes in peripheral blood (PB) or absolute count >2000L (Kyle’s criteria).1 This definition includes both primary PCL — in the absence of previous Multiple Myeloma (MM) — and secondary PCL - leukemia transformation of MM2. Primary PCL is a distinct clinical entity characterized by a younger age, rapid progression and poor prognosis. In the current definition of PCL, patients with circulating PC > 20% are classified as MM, however, recent studies have shown that MM patients with either ≥ 2% or ≥ 5% circulating PC in PB have adverse outcomes in PCL, suggesting that a lower threshold should be used.3,4,5

Methods: Case report

Results: Male, 45 years, ECOG 0, presents with 10% (1100/uL) aberrant PC in PB and no lytic lesions. Cytogenetic analysis showed no apparent high-risk abnormalities although the status of t(14;16) was not studied. Median/longitudinal histiography had extensive PC infiltration, which represented about 40-50% of the cell population. Flow cytometry (FC) analysis showed the presence of 16.4% of pathologic PC in PB and 23.2% in bone marrow with immunophenotype: CD19-, CD20-, CD27, CD38+, CD33-, CD34-, CD38+, CD45-, CD56, CD117+, CD138+, cykappa+. Since the immunophenotypic criteria for PCL were not met, a diagnosis of IgG-Kappa MM, ISS-3, was assumed. Bortezomib, Thalidomide, and Dexamethasone (VTD) followed by stem cell transplantation was proposed. Due to renal failure at diagnosis, five hemodialysis sessions were performed, with improvement. After the third VTD, due to disease progression, the regimen was changed to Daratumumab, Thalidomide, Cyclophosphamide and Dexamethasone.

Conclusion: In light of current knowledge, immunophenotypically, both in PCL and MM, CD38 and CD138 are positive and CD2, CD3 and CD16 consistently negative. The markers that differ in their expression are CD20, CD56, CD9, CD117 and HLA-DR, 1,5,6,7,8,9,10 from PC tend to express a more immature phenotype, and show a higher expression of CD20 and lower HLA-DR compared to MM, 1,5,6,7,8,9,10. In addition, PCL is marked by the absence of CD33 and CD56.6,7,8,10 Of the requirements defined for the diagnosis of PCL, both IMWG and WHO suggest that one of the Kyle&Coons criteria must be present.6,7,12 However, threshold established was arbitrary and several studies have questioned this cut-off,13 even IMWG in 2013 suggested that this criteria should be revised.12 A study using FC came to the conclusion that the number of circulating PC is an independent prognostic factor and than scores ≥ 400 pathologic PC in 150,000 events (0.26% circulating cells) leads to a significant reduction in overall survival: 10 This case emphasizes the importance of reviewing the diagnostic criteria for PCL and finding a new threshold through more sensitive, accurate and reproducible technology, such as FC, thus improving the diagnosis and risk stratification.

CONFLICT OF INTEREST
No potential conflict of interest to report.
MALIGNANT PLEURAL EFFUSION AND TRANSFORMED LYMPHOMA

Pedro Cabral1; Matilda Felgueiras2; Patrícia Amanteagui1; Andrea Monteiro1; Paula Gama1; Filipa Ferreira1; Patrícia Sousa1

Clinical Pathology Department, Centro Hospitalar Universitário Cova da Beira – Covilhã, Portugal; Clinical Pathology Department, Unidade Local de Saúde de Matoinsinhos – Matoinsinhos, Portugal; Hemato-Oncology Laboratory, Instituto Português de Oncologia de Lisboa Francisco Gentil – Lisboa, Portugal; Haematology Department, Centro Hospitalar Universitário Cova da Beira – Covilhã, Portugal

No potential conflict of interest to report. No potential conflict of interest to report.

ABSTRACT
Pleural effusion is a common complication of non-Hodgkin and Hodgkin lymphomas, occurring in up to 30% of cases, and adversely affecting overall survival. However, in Waldenström’s Macroglobulinemia (WM), a rare indolent B-cell lymphoproliferative disorder characterized by bone marrow infiltration of clonal lymphoplasmacytic cells that produce monoclonal IgM paraprotein, pulmonary involvement, including pleural effusion, occurs in 50% of patients identified by serum immunofixation. WM was, therefore, diagnosed. A right thoracoscopy with subsequent pleurodesis was performed revealing multifocal nodular lesions of the pleura, which were biopsied. The involvement of the pleura by a DLBCL was documented. The patient started RCHOP chemotherapy, directed against the aggressive lymphoma. Subsequent molecular studies confirmed the same clonal IGH and IGK rearrangements in both lymphoproliferative diseases, thus implying lymphomatous transformation. Although an undetermined complete remission was achieved after 6 RCHOP cycles, the patient relapsed in less than 2 years, synchronously from the DLBCL and the lymphoplasmacytic lymphoma/WM, detected through a transformation. Although an undetermined complete remission was achieved after 6 RCHOP cycles, the patient relapsed in less than 2 years, synchronously from the DLBCL and the lymphoplasmacytic lymphoma/WM, detected through a transformation. Although an undetermined complete remission was achieved after 6 RCHOP cycles, the patient relapsed in less than 2 years, synchronously from the DLBCL and the lymphoplasmacytic lymphoma/WM, detected through a transformation.

CONFLICT OF INTEREST
No potential conflict of interest to report.

PLATELET SIZE EVALUATED BY THE FORWARD SCATTER IN INHERITED THROMBOCYTOPENIAS

Catarina Lau1; Marta Gonçalves1; Sónia Fonseca1; Ana Helena Santos2; Lurdes Oliveira2; Marlene Santos4; Vânia Ventura2; Monica Pereira1; Catarina Monteiro1,3; Maria Anjos Teixeira1; Sara Morais1; Margarida Lima1

1. Laboratório de Citometria, Unidade de Diagnóstico Hematológico (UDH), Serviço de Hematologia Clínica, Centro Hospitalar Universitário do Porto (CHUP), Portugal; 2. Unidade de Trombose e Hemostase e Centro de Coagulação Congénitas, Serviço de Hematologia Clínica (SHC), Centro Hospitalar Universitário do Porto (CHUP), Portugal; 3. Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto Magalhães (CGM/M), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal; 4. Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/IBAS/UP), Portugal.

CONTACTS mcatarinalau@gmail.com

ABSTRACT
Introduction: Inherited thrombocytopenias (IT) are heterogeneous disorders whose knowledge has greatly increased in recent years. The diagnostic algorithm presented in 2013 by Baldi et al. considers that, once excluding the syndromic forms, the platelet (PLT) size is important to guide the diagnosis. However, the correct assessment of PLT size is not easy, because the mean platelet volume measured with automated electronic counters frequently underestimates it, especially in cases of thrombocytopenia with very large PLTs. To minimize this problem, we evaluated the possibility of using the PLT Forward Scatter (FSC), obtained when performing the determination of the PLT glycoproteins (GP) by flow cytometry (FC), to estimate the PLT size, and investigated its value to identify different groups of IT, including inherited macrothrombocytopenia (IMT) and IT with normal PLT size.

Methods: We analyzed the PLT-FSC, using a Novocea flow cytometer, in 71 patients with ITM – 9 MYH9-related thrombocytopenia (RT), 17 Bernard Soulier syndrome (BSS), 29 ITGA2B/ITGB3-RT, 11 ACTN1-RT and 6 TUBB1-RT – and 10 patients with IT with normal PLT size - all with ANKRD26-RT - diagnosed in our center. We compared the patients’ PLT-FSC with the median PLT-FSC value obtained in four healthy controls (HC) (blood donors) studied in parallel (313 HC in total), and calculated the FSC index (% normal values) for each patient, as follows: patient PLT-FSC / median PLT-FSC value obtained in HC100. The results were expressed as median, minimum and maximum values. Differences between groups were evaluated using the Mann Whitney test. For test performance, we calculated the sensitivity, specificity, positive and negative predictive values (SS, SP, PPP and NPP) of FCS indexes above 175% and above 250% for specific IMT subtypes.

Results: PLT-FSC: PTL-FSC from patients with MYH9-RT, biallelic-BSS, ACTN1-RT, ITGA2B/MITGB3-RT, and monoallelic-BSS, were significantly higher (p<0.001 in all cases) and PTL-FSC from patients with TUBB1-RT were slightly higher (p0.05). PLT-FSC indexes: The following FSC indexes were obtained – MYH9-RT: 339% (197-545); Biallelic-BSS: 200% (165-258); ACTN1-RT: 146% (132-176); ITGA2B/MITGB3-RT: 135% (76-175); Monoallelic-BSS: 127% (108-167); TUBB1-RT: 125% (117-143); ANKRD26-RT: 90% (79-126). Test performance: PLT-FSC indexes >175% had a SS of 88%, SP of 100%, PPP of 100% and NPP of 99% for the diagnosis of MYH9-RT or biallelic BSS, which can be easily distinguished based on the GPIB/V/IX levels. FSC indexes >250% had a SS of 88%, SP of 100%, PPP of 100% and NPP of 99% for diagnosis of MYH9-RT.

Conclusion: We confirmed the importance of PLT size in the algorithm of investigation of IT, and validated the utility the PLT-FSC to measure it by FC. The FSC index allows to estimate transformability in PLT size and to discriminate some IMT with high sensitivity and specificity.
NODAL GAMMA-DELTA T CELL LYMPHOMA – CASE REPORT

Rodrigues P.C.1; Malheiro B.1; Pires A.1; Azevedo C.1; Godinho I.1; Sousa M.E.1; Palmeira C.1; Fernandes B.1; Coentrao R.1; Tenesa S.1; Mendes C.2; Ribeiro T.3; Mariz M.1; Martins G.1

1. Department of Clinical Pathology, Braga Hospital, Braga, Portugal;
2. Department of Immunology, Portuguese Institute of Oncology of Porto, Porto, Portugal;
3. Department of Laboratory Haematology, Portuguese Institute of Oncology of Porto, Porto, Portugal;
4. Department of Haemato-Oncology, Portuguese Institute of Oncology of Porto, Porto, Portugal

ABSTRACT

Introduction: Approximately 10 to 15% of non-Hodgkin’s lymphomas (NHL) derive from T or NK cells and only 2-4% of T-cell lymphomas express gamma delta (γδ) T Cell Receptor. The WHO classification recognizes four subtypes of γδ T lymphoid neoplasms: hepatosplenic γδ T-cell lymphoma, primary cutaneous γδ T-cell lymphoma, monomorphic epitheliotropic intestinal T-cell lymphoma and large granular lymphocytic leukemia. These neoplasms are very rare and aggressive, and their diagnostic is very difficult. Complication of NHL include pleural, pericardial or peritoneal effusions. The cytological and immunophenotypic examination of these fluids may be useful for the diagnosis and classification of the lymphoma.

Case report: A 75-year-old woman, with no relevant medical history, was admitted to the hospital due to abdominal pain and B symptoms. She presented mild thrombocytopenia, with no other relevant alterations in the peripheral blood count. A computed tomography scan showed numerous paracolic, retroperitoneal and intraperitoneal lymphadenopathies, splenomegaly, pleural effusion and ascites. The analysis of the pleural fluid showed a predominance of lymphocytes with 12% large mononuclear cells, with basophilic cytoplasm and reticulated chromatin. The immunophenotypic characterization by flow cytometry revealed 14% of large cells expressing: CD3+ CD4- CD8++hom CD2++hom CD5++ CD7++ CD1a- CD11b- CD11c+ hom CD14- CD68- CD27+ CD38+ CD30- CD45RA- CD45RO+ CD56- CD57- CD94- CXCR4- CCR7+ CD27+ Granzyme+ Perforin+ CD8+ HELPR+ TCL1- TCRy- and Tdt+. A lymph node biopsy was performed. The immunohistochemistry study showed T cells CD3+ CD5+ CD2+ CD4- CD8+ Bcl2+ Bcl6+ MUM-1+ CD20- pax5- CD10- CCR7+ CD279- CD71- CD200- CD9- TCL1- CD38+ and ALK- A Ki67 of 90% was estimated.

Bone marrow biopsy showed involvement by the T cell neoplasm, with an interstitial pattern. Flow cytometry of the peripheral blood showed: CD3+ CD4- CD8++hom CD2++hom CD5++ CD7++ CD1a- CD11b- CD11c+ hom CD14- CD68- CD27+ CD38+ CD30- CD45RA- CD45RO+ CD56- CD57- CD94- CXCR4- CCR7+ CD27+ Granzyme+ Perforin+ HELPR+ TCL1- TCRy- and Tdt+. A lymph node biopsy was performed. The immunohistochemistry study showed T cells CD3+ CD5+ CD2+ CD4- CD8+ Bcl2+ Bcl6+ MUM-1+ CD20- pax5- CD10- CD20- CD11b+ and ALK-. A Ki67 of 90% was estimated.

Conclusion: Although the WHO classification is helpful in defining the γδ T-cell lymphoma subtypes, there are rare variants described in literature that are not included in the current version of WHO classification, which may hamper their diagnosis and treatment. The case reported herein may correspond to one of these rare variants, the nodal γδ T-cell lymphoma. It’s a rare lymphoma with disseminated nodal involvement, with variable cell morphology and frequent bone marrow infiltration. Hepatosplenomegaly may be present. This subtype is very resistant to chemotherapy and has a poor prognosis. Gamma-delta T-cell lymphomas are still a poorly understood pathology due to their low incidence. The report of these rare cases may help clinicians to better understand, diagnose and provide a more effective care to these patients.

CONFLICT OF INTEREST

No potential conflict of interest to report.
CONFLICT OF INTEREST
No potential conflict of interest to report.

ABSTRACT
Introduction: T-cell chronic lymphoproliferative disorders (T-CLPD) are a heterogeneous group of mature T-cell-derived tumors, which classification is difficult and poorly reproducible. Comprehensive immunophenotyping of T-CLPD cells through in-depth analysis of functional- and maturation-associated markers have not been performed. Our aim was to phenotypically compare tumor cells vs normal T-cell subsets, to approach to T-CLPD normal cell counterparts.

Methods: Peripheral blood samples from 30 T-CLPD and 53 age-matched healthy donors were phenotyped and analyzed by flow cytometry, using the 14-color EuroFlow-Immunomonitoring TCD4 tube (and the TCD8 tube for T-LGLL), following EuroFlow SOPs. Patients were classified (WHO2017) as follows: 11 T-PLL; 12 T-LGLL (8 CD8+ 3 CD4+ and 1 Tgd-LGLL).

Results: In all categories, tumor cells overlapped with the phenotype of conventional (helper or cytotoxic) T cells, i.e. neither regulatory or follicular helper T cells. T-PLL cells showed a heterogeneous chemokine receptor (CR) pattern -except for CCR10, negative in all cases-, despite this, T-PLL cases could be grouped into 3 profiles of CR expression: i) in 5 cases (45%) most tumor cells (≥50%) did not express any CR and cells only partially expressed CD194, CD196 or CD183 (consistent with a non-classical Th profile (CD183+/CD194+/CD196+); ii) in 2 cases (18%), expressed a non-classical Th profile (CD183+/CD194+/CD196+); iii) in 2 cases (18%) expressed a non-classical Th profile (CD183+/CD194+/CD196+).

Conclusion: T-PLL and SS cells are phenotypically heterogeneous, as reflected by intra- and inter-patient variability, while T-LGLL cells show a homogeneous profile (Th1 effector cytokotic cell). Despite this, common patterns were found for T-PLL and SS, consistent with a predominant CD183+lo/CD194+hi/CD196+lo naïve/CM and a Th2/Th17 CM/TM or naïve-like CD4T-cell, respectively. These data support that classification of T-CLPD according to functional and maturation normal T-cell cells would be useful to gain insight into the biological derivation of T-CLPD.

CONFLICT OF INTEREST
No potential conflict of interest to report.
INTRODUCTION: Bone marrow (BM) examination is an essential part of diffuse large B-cell lymphoma (DLBCL) staging and has an important prognostic value. Recent studies have shown that using flow cytometry (FCM) in detecting BM involvement at DLBCL diagnosis and evaluating its prognostic value is beneficial. Our aim was to analyze the FCM utility in detecting BM involvement at DLBCL diagnosis and evaluate its prognostic value.

METHODS: A retrospective two-center study of de novo DLBCL NOS cases (2014-2020 period) with complete BM assessment (PET, BMB, and FCM) at diagnosis. FCM methodology: 8-color instruments (Canto II) since 2016, LoQ 0.01%. Clinical and biological variables were compared by descriptive statistics tests, focusing on cases with BM involvement by FCM (FCM+).

RESULTS: Ninety-nine patients were included, 16/9 with BM involvement by FCM (any quantity). The groups FCM+ and FCM- presented similar baseline characteristics (males 69% vs 52%, p=0.2; median age 66 vs 67, p=0.8; cell of origin non-geminal center B 62% vs 42%, p=0.1; ECDO ≥2% vs 14%, p=0.7) except for three variables: median LDH level (UL) (380 vs 240, p=0.04), extranodal sites ≥2 (50% vs 20%, p=0.03), and Ann Arbor stage III-IV (94% vs 49%, p=0.001). Of the FCM+ patients, 4/16 (25%) presented BM involvement by a concordant large-cell lymphoma, 11/16 (69%) by a discordant low-grade B-cell lymphomatosus disorder, and 1/16 (6%) by both large and small B-cell disorders. Median infiltration by FCM was 0.9% (0.05-27), <2% in 10/16 cases. If BM involvement would have been considered as positive in all cases 4/16 would be positive.

CONCLUSIONS: Although current guidelines do not include FCM as a relevant analysis in detecting BM involvement at DLBCL diagnosis, it may have an important role specially in cases with discordant infiltration of a low-grade B-cell disorder. Furthermore, BM infiltration by FCM is related with a worse prognosis, without considering BMB or PET. The minimal BM involvement detected by FCM should be considered as extranodal involvement and may have a prognostic implication.
Conclusion: Tumors with a T follicular helper (TFH) cell phenotype, as defined by the expression of at least two of the following markers: CD10, BCL6, PDI (CD279), CXCL13, CXCR5 (CD185), ICOS (CD278) and SAP, are excluded from the Peripheral T-cell lymphomas NOS (PTCL) classification. These lymphomas (TFH) are thought to constitute the neoplastic counterpart of TFH cells. According to the WHO classification, the Angioimmunoblastic and Nodal Peripheral T-cell lymphomas with TFH phenotype are included in this category (1). In these PTCL with TFH phenotype, neoplastic T cells express most pan-T-cell antigens (CD3, CD2, and CD5) and in most cases are positive for CD4. Surface CD3 may be reduced or absent by flow cytometry (FC)(3). Beside the presence of atypical T-cell population CD3+CD10+, the literature on FC mentions another atypical phenotype, CD3-/+dimCD4+(2-4). It seems a useful feature in distinguishing PTCL of follicular origin (2-4). FC may provide an important clue for complementary diagnostic studies.

Methods: A 73 years old male with 2 cervical and multiple mesenteric adenomegalies, a slightly splenomegaly, EBV+ was admitted at our institution on January 2021, with a suspicion of lymphoproliferative disease. It was detected a monoclonal peak IgGk. Initially, a lymph node (LN) sample was sent to our laboratory with a suspicion of lymphoproliferative disease and, three weeks later, a bone marrow (BM) sample was received. The analysis of these samples was performed by multiparametric 8 color FC. First, on the LN, a screening tube was performed, to detect the pathologic population and then a multiparametric tube was performed, combining the previously selected monoclonal marker with other pan-T-marker to characterize this population.

Results: The immunphenotypic(IF) study of the LN revealed 47.83% of T cells with a normal CD4:CD8 and normal expression of the PAN T-cell markers. Besides this, 6.80% T lymphocytes CD3-CD4+ were present. The IF of this pathologic population was: CD2+CD3-CD4+CD5+dim/+CD7+/+CD8-CD10+dimCD45++. It wasn’t possible to complete the immunphenotypic study due to reduced sample volume. The BM sample presented 0.07% of pathological T-cells with an IF: CD2+CD3-CD4+CD5+dim/+CD7+/+CD8-CD10+dimCD45++. It wasn’t possible to complete the immunphenoanalysis of BM sample due to high percentage of death cells. Anatomopathologic analysis of the BM revealed findings compatible with PTCL with TFH phenotype in BM no malignant T cells were detected.

Conclusion: The immunphenotypic characterization of BM and LN samples revealed the presence of CD3-CD4+ T-cell population described in PTCL of TFH derived cases (3). This aberrant phenotype detection is important because CD10 expression, although characteristic of PTCL with TFH, may be expressed by normal T cells, like a subset of normal TFH and T-cells in LN with reactive follicular hyperplasia (2-4). FC may provide an important clue for complementary diagnostic studies.

CONFLICT OF INTEREST
No potential conflict of interest to report.
Introduction: HIV infection causes targeted deletion of CD4+ T cells and reduced percentages of other immune cells, including Natural Killer (NK) cells. If left untreated, HIV infection results in severe immunodeficiency and death. Antiretroviral therapy (ART) leads, for most of the patients, to the recovery of CD4+ T cells counts. However, individuals on long-term ART with good CD4+ T cells immunity recovery still present increased susceptibility to opportunistic infections and higher incidence rates of cancer, when compared to the overall population. Little is known on the impact of ART on the homeostasis and phenotype of NK cells. Given the importance of NK cells as a first line of defense against certain viral infections and malignant tumors, we hypothesize that increased susceptibility to infection and malignancies may be linked to poor NK cell recovery, in terms of numbers and/or phenotype. Therefore, we aimed to evaluate the alterations of NK cells from ART initiation and after the first 36 months (M) of therapy, in comparison to healthy control (HC) individuals.

Methods: We used a cohort of HIV-infected patients followed since ART initiation up to 36M to evaluate CD56+CD3- NK cells, and their expression of several activating and inhibitory surface receptors, in cryopreserved peripheral blood mononuclear cells (PBMCs).

Results: We observed that the percentages and total numbers of NK cells in HIV-infected individuals are persistently lower than in HC, irrespectively of being on ART. In addition to the lower number, NK cells revealed a persistent distinct phenotype of NK cells. Given the importance of NK cells as a first line of defense against certain viral infections and malignant tumors, we hypothesize that increased susceptibility to infection and malignancies may be linked to poor NK cell recovery, in terms of numbers and/or phenotype. Therefore, we aimed to evaluate the alterations of NK cells from ART initiation and after the first 36 months (M) of therapy, in comparison to healthy control (HC) individuals.

Conclusion: Our observations suggest that there is an accumulation of terminally differentiated NK cells, described to have poor potential to respond to new stimuli, in HIV infected individuals under ART. These results may elucidate the role of NK cells in the development of clinical complications in ART treated HIV-infected patients and open new avenues for the discovery of new therapeutics targeting NK cells, hence contributing to improved quality of life in HIV-infected individuals.

Keywords: Human immunodeficiency virus (HIV) infection, antiretroviral therapy (ART), natural killer (NK) cells, immune recovery.
No potential conflict of interest to report.
MULTIPLE SCLEROSIS AT CLINICAL ONSET

INTRODUCTION

The immune system has the tricky task of fighting pathogens, while being tolerant to self-peptides avoiding autoimmune diseases. Failure at maintaining this tolerance, particularly at the level of T cells, which are produced in the thymus, is described to underlie multiple sclerosis (MS) pathogenesis. MS can manifest in different forms, being the most common (~85%) the relapse-remitting MS (RRMS), characterized by bouts of disability followed by recovery. It has been suggested that RRMS patients have lower thymic export, an aged adaptive immune system and that the regulatory capacity of regulatory cells is reduced compared to healthy controls (HC). However, it is still not clear if these alterations are already present at disease onset. Our aim is to study the immune system of disease modifying drugs’ naïve RRMS patients at disease onset regarding thymic export, naïve and memory T cell subsets and regulatory cells phenotype.

METHODS

Newly diagnosed RRMS patients (n=27) and sex and age-matched HC (n=35) were recruited. Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood by gradient centrifugation, enumerated and cryopreserved until use.

RESULTS

In comparison to HC, newly diagnosed RRMS patients presented lower percentages, but similar numbers, of CD4+ recent thymic emigrants (CD3+CD45RA+CCR7+CD45RO-). In accordance, no differences were observed on sTREG levels. Newly diagnosed RRMS patients had higher percentages of naïve (CD45RA+CCR7+CD45RO-) CD4+ T cells, and lower percentages of total memory cells (combination of central memory [CD45RA-CCR7+CD45RO+], effector memory [CD45RA-CCR7-CD45RO+] and terminally differentiated [CD45RA+CCR7-CD45RO-]) for both CD4+ and CD8+ T cells. The numbers of memory CD4+ T cells were lower in newly diagnosed RRMS patients, as a result of lower numbers of central and effector memory cells. Altogether, these alterations translated into a higher naïve/memory T cell ratio on RRMS patients. Compared to HC, RRMS patients had higher numbers of naïve and lower of activated HLA-DR+ (most suppressive) Tregs [CD127-CD25+FOXP3+CD4+ T cells]. No major alterations were observed on the percentages and numbers of natural killer (NK, CD3-CD56+) and NK T-like (CD3+CD56+) cells, and their subsets. Notwithstanding, RRMS had higher percentages of immature NK cells expressing the inhibitory receptors KLRG1 and NKG2A, and lower percentages of NK T-like cells expressing the inhibitory receptors KIR2DL2/3 and KIR3DL1.

CONCLUSION

Our results suggest that RRMS patients at disease onset have similar thymic export of T cells, but the former display higher naïve/memory ratio of CD4+ T cells, signs of reduced Treg suppressive capacity and higher numbers of memory CD4+ T cells. Functional studies will be essential to further understand the mechanisms underlying these alterations and their impact on disease manifestation.

CONFLICT OF INTEREST

No potential conflict of interest to report.
Methods: We have undertaken a comprehensive immunological analysis of lymphocyte and monocyte populations in a cohort of elderly volunteers (age range, 64–101) differing in their cognitive status. Peripheral blood mononuclear cells were isolated from blood samples collected from elderly volunteers and were immediately phenotyped and functionally characterized by flow cytometry. Cytokine expression (IFNγ, IL-2, IL-4, IL-10) was evaluated using ELISA in plasma samples from the elderly volunteers.

Results: Hereby, we report on the identification of a novel signature in cognitively impaired elderly characterized by: (1) elevated percentages of CD8+ T effector-memory cells expressing high levels of the CD45RA phosphate receptor (TEMRA+); (2) high percentages of CD8+ T cells expressing high levels of the CD8β chain (CD8β+); (3) augmented production of IFNγ by in vitro activated CD4+ T cells. Noteworthy, CD3+CD8+ TEMRA hi and CD3+CD8β hi cells were associated with impaired lymphocyte function in the elderly.

Conclusion: To our knowledge, this is the first report in humans linking the amount of cell surface CD45RA and CD8β chain expressed by CD8+ TEMRA cells, and the amount of IFNγ produced by in vitro activated CD4+ T cells, with impaired cognitive function in the elderly.

CONFLICT OF INTEREST No potential conflict of interest to report.
Introduction: Celiac disease (CD) is an immune-mediated systemic disorder triggered by gluten intake, which can cause alterations to duodenal mucosa, ranging from intraepithelial lymphocytosis to villous atrophy. The latter lesions are not exclusive of CD and may be present in other digestive disorders. Duodenal lymphogram has been proven to be a useful tool in the diagnosis of CD. The typical finding is an increase of total intraepithelial lymphocytes (IELST), as well as an increase of IELS TcR-γδ+ associated with a decrease of iNK cells. The aim of this study was to describe the characteristics of the duodenal lymphogram in patients with CD and compare them with those found in patients with atrophic gastritis, H. pylori infection and controls.

Materials and methods: Duodenal biopsy samples received in our service between December 2019 and December 2020 were included in this study. From the total of 66 samples, only 5 belonged to pediatric patients, and these were excluded from the study. Adult patients were distributed into two categories: I) CD and II) non-CD. Additionally, the last were divided into three subgroups: IIa) atrophic gastritis, IIb) H. pylori infection and IIc) controls. Based on the established protocol, the study of the duodenal lymphogram was carried out using flow cytometry in intestinal biopsy samples. Cut-off values were: IELST>12%, IELS TcR-γδ+>10% and iNK<40%. SPSS Statistics 17.0 was used to perform the statistical analysis. Results were considered significant when p ≤ 0.05.

Results: Duodenal lymphogram from CD patients was compared with that of non-CD patients. As expected, the results showed significantly higher values in celiac patients for IgA-tTG (p=0.023), IgG-DPG (p=0.022), IELST (p=0.012), IELS TcR-γδ+ (p=0.001) and lower iNK values (p=0.001) than non-celiac patients. When non-CD patients were divided into different groups according to their digestive pathology (gastritis, H. pylori infection, and controls), we obtained similar results: patients diagnosed with CD presented significantly higher values of TcR-γδ+ than the rest of the groups. Besides, iNK values were significantly lower in CD compared to patients with atrophic gastritis (p=0.02) or controls (p=0.002), but no significant difference was observed when compared with the H pylori infection group. Finally, according to the Marsh classification, an inverse relationship between iNK levels and the degrees of Marsh scale was observed.

Conclusion: Our results highlight the usefulness of the duodenal lymphogram in the differential diagnosis of CD, especially the combination of TcR-γδ+ and iNK counts. iNK subpopulation may be considered as a marker of intestinal mucosal aggression.

CONFLICT OF INTEREST No potential conflict of interest to report.
TITLE | EVALUATION OF EXPRESSION OF HLA-DR IN MONOCYTES BY FLOW CYTOMETRY AS AN INDICATOR OF INFLAMMATORY DISEASE

AUTHORS | Veridiane Maria Pscheidt1; Victória Carvalho Rosa1; Maria Carla Dania Barbosa2; Ana Paula Alegretti2; Mariela Granero Farias3

AFFILIATION | 1. Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; 2. Specialized Diagnostic Unit, Clinics Hospital of Porto Alegre, Porto Alegre, Brazil; 3. Hematology Unit, Clinics Hospital of Porto Alegre, Porto Alegre, Brazil.

CONTACTS | veridianepscheidt@gmail.com

ABSTRACT | Introduction: Monocytes play an important role in immune regulation. These cells are responses for antigen presentation to lymphocytes leading to initiation of humoral and cellular immune response. Monocytes presents functions as phagocyte and cytokines production mediated by cellular surface molecules expression. The human main histocompatibility complex (MHC) is the human leukocyte antigen (HLA). HLA-DR is a type of HLA molecule encoded in HLA gene class II region. HLA-DR is expressed on membrane of antigen presenting cells (APCs). HLA-DR molecules are important to presentation of antigens to CD4+ T cells, are mostly expressed in monocytes and reflect activation state of these cells. In inflammatory and infectious diseases occur decrease of HLA-DR molecule expression on monocytes surface. This study aimed to investigate the potential use of HLA-DR molecule expression in monocytes quantify by flow cytometry method as a biomarker to inflammatory disease diagnostic in outpatients and intensive care unit (ICU) patients.

Methods: Peripheral blood samples of ICU patients hospitalized between May and July of 2018 were analyzed using a flow cytometer to quantify HLA-DR molecule expression in monocytes. Demographic and clinical laboratory data were prospectively analyzed. The value of Immature Granulocyte % (IG%) higher than 0.65% was used to describe the outcome cases (inflammatory disease), as previously reported. Cut-off of MFI HLA-DR were compared with others laboratory variables commonly changed in inflammatory disease as White Blood Cells (WBC) count, IG% count, C-Reactive Protein (CRP) levels, band cells percentage in peripherical blood and detection of “flags” by hematological analyzer.

Results: 78 ICU patients were included in this study. ROC analyze revealed that cut-off of HLA-DR mean fluorescence intensity (MFI) to detect the outcome was 1379, with sensitivity of 63.6% and specificity 97.1%. Area Under Curve (AUC) was 0.833 (95% Confidence Interval 0.746-0.921) and p value 10% (p<0.001) and “flags” detection (p=0.001).

Conclusion: MFI values of HLA-DR below 1379 were associated to other biomarkers of inflammatory disease. Quantify of HLA-DR expression in monocytes by flow cytometry method presents high specificity to detect inflammatory disease in ICU patients.

CONFLICT OF INTEREST | No potencial conflict of interest to report.

TITLE | COMPLETE CD4 EXPRESSION DEFECT – CASE REPORT

AUTHORS | Cátia Inacema Morais1; Júlia Vasconcelos2; António Marinho3; Joel Reis1; Margarida Lima4; Jacinta Bustamante1; Julite Guimarães1; Esméralda Neves1

CONTACTS | ciracexamorais@gmail.com

ABSTRACT | Background: CD4 is a T cell membrane coreceptor involved in thymic selection and T cell activation. Complete multilineage CD4 expression defect due to a CD4 gene mutation is an extremely rare disorder with only one case recently reported in the literature. Distinctively to idiopathic T CD4 lymphopenia, which often courses with opportunistic infections, the single reported case of CD4 expression defect presented itself with treatment refractory warts without other recurrent infections or features of disordered immunity.

Case presentation: We present a case of a 52-year-old male, born from consanguineous parents, referred to our hospital with a 4-decade history of exuberant non-pruritic verrucous skin lesions. He was an active smoker with 45 pack-years of smoking load. Prior medical history included pulmonary and laryngeal tuberculosis at ages 10 and 20, respectively; a dental abscess requiring surgical drainage at age 46 and gastrointestinal pathology comprehending hemorrhoids, hialtal hernia and erthyematous gastritis. Relevant aspects of his family history comprised a brother recently diagnosed with a complete CD4 expression deficiency who presented with Whipple’s disease, and a nephew with dermatological lesions reportedly similar to the patient’s. Physical examination disclosed well-circumscribed skin to brown colored verrucous papules involving torso, chest, neck, limbs and genitals suggestive of common warts and genital warts. Relevant laboratory findings included moderate lymphopenia (1053x10^-3/L) and reduced IgG levels (589x10^-6/L). Flow cytometry revealed complete absence of CD4+ T cells (G, c. 245C>G). This is the same homozygous mutation detected on his brother, but distinct from the one previously reported in the literature. He started on isotretinoin in July 2020, with regression of the skin lesions except for the genital area. There is no record of new intercurrences to date.

Discussion: We report a new case of multilineage CD4 expression defect. Similar to the previously reported case, this patient presented with extensive verrucous dermatosis. Distinctively, he had a history of mycobacterial infection and B cell lymphopenia with hypogammaglobulinemia. The fact that CD4 deficient patients do not have severe recurrent infections may suggest that the expanded TCR-αβ+ CD4+/CD8- T cells are contributing to maintain a normal immune response, and that the CD4 molecule has a less relevant role supporting T cell development and activation than previously thought.

CONFLICT OF INTEREST | No potentencial conflict of interest to report.
Severity.

Our study shows a differential immune trait in DYS patients at ICU admission, with persistent lymphopenia, lower platelet counts, and increased %EM CD4 T-cells in all time points (p≤0.046). DYS patients had lower platelets at D3, with slower recovery in DYS patients (p=0.037), recovering afterwards, while nDYS showed similar values in all time points. At admission, effector CD8+ and CD19+ T-cell counts were similar between groups at D1 and D3, but both subsets increased in nDYS patients at D7 (CD8+, p=0.006; CD19+, p=0.046). Activated CD8 T-cells (%) were also decreased at D3 in DYS patients (p=0.037), recovering afterwards, while nDYS showed similar values in all time points. At admission, effector memory (EM) T-cells were higher in DYS patients (CD4%, p=0.025; CD19%, p=0.035; CD8 counts, p=0.011), who kept increased %EM CD4 T-cells in all time points (p=0.046). DYS patients had lower platelets at D3, with slower recovery in platelet counts and CRP levels. CRP decreased at D7 in nDYS patients (p=0.009). This evolution was not paralleled by any cardiac function parameter, and patients recovered with increasing P/F ratio (except in DYS group).

Discussion: Our study shows a differential immune trait in DYS patients at ICU admission, with persistent lymphopenia, increased EM T-cell subsets, and altered T-cell activation, suggesting distinct inflammatory states or migration patterns in patients that develop cardiac injury. Thus, T-cell dysregulation might undermine immunoprotection and contribute to disease severity.

Conclusions: Recent advances in cancer pathogenesis allowed the rise in studies of new biomarkers that can have significant diagnostic, prognostic, and therapeutic implications. Minimal residual disease (MRD) is an independent prognostic factor for relapse in pediatric AML. As said before, FLT3-ITD mutation at diagnosis is associated with a higher risk of relapse. In AML, as well as in other hematological malignancies, the expression of CD123 has gained particular attention. CD123, the α chain of the interleukin-3 receptor, is a cytokine receptor that is normally expressed on plasmacytoid dendritic cells, eosinophils, and neutrophils. Different studies showed an increased frequency of CD123+ cells within the immature cell population from pediatric AML. CD123 expression has been also reported to be correlated with mutations in FLT3 or NPM1.

Methods case report: Results Male, 5 years old, diagnosed with AML in the last quarter of 2020. Motivated by anemia and thrombocytopenia in a routine analytical study, AML was confirmed by bone marrow (BM) immunophenotyping (IF), with 22% of blasts (CD34+d/+, CD7-/+ , CD3+, CD11b-/+ , CD13-, CD14-, CD15-/- , CD19-/- , CD22-/- , CD33-/- , CD38-/- , CD56-/- , CD64-/- , CD117-/- , CD123+ , HLA-DR+/+, NG2- , TdT-). BM cytogenetic study revealed the presence of FLT3-ITD mutation. Induction treatment was immediately initiated, and after two cycles, less than 5% of blasts were detected on BM. Consolidation treatment was started, and after one month, the disease relapsed, with 6% of blasts (CD123+) on the peripheral blood, and more than 30% of myeloid blasts on the BM.

Conclusion: Recent advances in cancer pathogenesis allowed the rise in studies of new biomarkers that can have significant diagnostic, prognostic, and therapeutic implications. Minimal residual disease (MRD) is an independent prognostic factor for relapse in pediatric AML. As said before, FLT3-ITD mutation at diagnosis represents an increased relapse risk. However, MRD negativity for this mutation is not a reliable disease marker, since around 25% of patients have FLT3-ITD negative relapses, while positive at diagnosis. With this, IF has gained an important role in MRD detection. Interestingly, recent studies support CD123 as a diagnostic marker of MRD, as it is overexpressed on both leukemic stem cells and more differentiated leukemic blasts and is low on normal hematopoietic stem cells. It has also been reported that CD123 is overexpressed in most AML cases with mutations on FLT3 or NPM1. Most notably, this fact makes it also an important target for the development of new therapies. Tagraxofusp, a CD123 targeting agent recently approved for the treatment of blastic plasmacytoid dendritic cell neoplasm, is currently in clinical trials for AML. The development of a variety of approaches to target CD123 has produced promising results and has led to numerous clinical trials, creating an opportunity to potentially improve rates of long-term remission and survival in AML.
RESULTS: Controls and patients with- and without frequent infections.

We assessed the membrane expression of the members of the Idic15 Spain Association, has shown that about 50% of the patients had repeated upper-respiratory tract infections. In order to provide eventual biomarkers of susceptibility to infections in these patients, we have performed polychromatic immunophenotype of relevant lymphocyte subpopulations.

METHODS: This was a case-control, observational study of 28 patients diagnosed with Idic15, recruited among the members of the Idic15 Spain Association, and 17 controls matched by age, sex and geographical area. The membrane expression of CD3, CD4, CD8, CD14, CD19, CD21, CD27, CD28, CD45RA, CD56, CD57, CD197, CD279, IgD and IgM was determined by flow cytometry (Gallios, Beckman Coulter) using three panels of monoclonal antibodies conjugated to fluorochromes (Duraclone, Beckman Coulter). Cytometric data were compared statistically between the cohorts of patients and controls, and patients with- and without frequent infections.

RESULTS: Our results show that the cohort of patients with Idic-15 syndrome have decreased absolute (cells/μL) and relative (percentage of the parental population) concentration in peripheral blood of the subpopulation of central CD8 T-cells, of the population of total B cells and isotype-switched memory B lymphocytes. Stratification of the patient cohort according to the clinical history of frequent infections revealed that patients with frequent infections, compared with patients without frequent infections, showed additional decreases in circulating levels of naïve- and central memory CD8 T-cells, of total and naïve B lymphocytes, while plasmablast and isotype-unswitched memory B cells increased.

CONCLUSION: Our study suggests that the increased susceptibility to infections in some Idic-15 patients might be linked to alterations in relevant T- and B-cell subpopulations that could become suitable predictors of infection risk in such patients. Project financed by donations to the “One House One Life” Initiative promoted by Great Chance SLU.
BRAF MUTATION IN MATURE B-CELL NEOPLASMS NON HAIRY CELL LEUKEMIA

AUTHORS
Couto A. S.1; Palmeira C.1; Godinho L.1; Sousa M. E.1; Fernandes B.1; Pires A. M.1; Azevedo C.1; Rocha P.1; Rodrigues A.1; Henrique R.1; Monteiro P.1; Vilarinho L.1; Mariz J. M.1; Martins G.1

AFFILIATION
1. Clinical Pathology Department, Centro Hospitalar Tondela Viseu, Viseu, Portugal;
2. Immunology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal;
3. Genetics Department, Portuguese Institute of Oncology of Porto, Porto, Portugal;
4. Pathology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal;
5. Onco-Hematology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal

CONTACTS
anaesaracouto@gmail.com

ABSTRACT
Introduction: BRAF is a frequently mutated oncogene in a variety of cancers. Presently, BRAF V600E mutation had emerged as a genetic characteristic of hairy cell leukemia (HCL) and is considered to be most useful for differentiating this entity from related lymphomas, as it is exceedingly rare in other Non-Hodgkin Lymphomas (NHL). We present a clinical case in which this mutation was found in a patient with a Diffuse Large B-Cell Lymphoma, illustrating this potential diagnostic drawback.

Methods: A 73-year-old woman, with no relevant previous medical history, turned to a private health care provider with complaints of nausea and vomiting with several days of evolution. Although nocturnal hypersudoresis was referred, no other B symptoms were reported. At clinical evaluation, she was hemodynamically stable, with no fever, and a hepatosplenomegaly was observed. Analytically, a slight anemia with trombocytopenia and elevated LDH. The abdominal CT scan revealed a liver of increased dimensions and a marked splenomegaly with suspected splenic rupture, with infracentimetric retroperitoneal lymphadenopathy. The patient was then transferred and admitted to an experienced tertiary cancer centre to perform a splenectomy and to proceed with clinical investigation.

Results: Initial flow cytometric immunophenotypic characterization of peripheral blood presented with 32.94% of pathological B lymphocytes, but the immunophenotype and proliferative index (intermediate) were not suggestive of HCL. Then, the immunophenotypic characterization of tumor fragment (spleen) revealed the presence of a B-NHL with a overlapping immunophenotype from previous B-NHL described in peripheral, but a higher proliferative index, suggesting an high grade B-cell lymphoma. The morphological and immunohistochemical analysis of the anatomical piece revealed findings compatible with the diagnosis of a Diffuse Large B-cell Lymphoma, although the possibility of transformation / progression of a previous indolent B lymphoma was admitted. Research on mutations in the BRAF gene was performed using real time PCR, and the oncogenic variant V600E/D of the BRAF gene was detected.

Conclusion: The immunophenotypical analysis of this patient presented with a peculiar heterogeneity, with peripheral blood pathological B cells not presenting any characteristic pattern of any B-NHL but a clear diagnosis of a Diffuse Large B-Cell Lymphoma in the spleen fragment. Within diverse mature B-cell neoplasms, the BRAF V600E mutation is highly associated with hairy cell leukemia and can be considered a driver mutation of this disease. In contrast, within literature, there are not many reported cases of other types of NHL-B with this specific mutation present. The aim of this report is to raise awareness of the possibility of the presence of this mutation in other B-cell neoplasms, not only because of the potential misdiagnosis, but also as targeted inhibition of activated BRAF is now possible.

CONFLICT OF INTEREST
No potential conflict of interest to report.
Material and methods: One-hundred seventeen clinical isolates belonging to Enterobacterales group II were studied (43 at FASTinov and 74 at Ramon et Cajal Hospital). All the isolates included were categorized as resistant (R) or susceptible increased exposure (I) to cefotaxime or ceftazidime. To test for the presence of an ESBL, susceptibility to cefepime and without clavulanic acid by disk diffusion tests (Oxoid, Thermofisher) was performed and considered the reference method. In parallel, bacterial cells in exponential growth-phase were incubated for 1 h, 37ºC with cefepime at several concentrations, with and without clavulanic acid, and stained with a membrane-potential sensitive fluorescent probe. The intensity of fluorescence of the bacterial cells was quantified in a flow cytometer (CytoFlex, Beckman Coulter) and analyzed through a proprietary software. Whenever an increase of the fluorescence of the cells incubated with cefepime and clavulanic acid in comparison with cells without clavulanic acid was registered, the strain was considered positive for ESBL. The proportion of agreement (PA), sensitivity and specificity of the assay were calculated.

Results: Thirty-four clinical strains were classified as ESBL positive by reference method. PA was 90.6% with sensitivity and specificity of 94.1% and 89.2% respectively.

Conclusion: The hereby described flow cytometric assay is very promising in Microbiology labs allowing a rapid detection of ESBL in a simple and fast approach. A rapid detection of such enzymes will improve therapeutic management but also allow the isolation of the patient in useful time, preventing the spread of those resistant bacteria through hospital/community.

CONFLICT OF INTEREST
No potential conflict of interest to report.
INTRODUCTION: A common procedure in flow cytometry (FCM) of microorganisms is the analysis of the cytotoxic effects of chemical compounds. Most bacterial viability studies assess membrane permeability to nucleic-acid binding dyes, SYTO-9 and propidium iodide (PI) being the most widely used. Both live and dead bacteria are permeable to SYTO-9 emitting green fluorescence. PI permeates dead or damaged cells, emitting orange fluorescence. Viability of bacteria may also be assessed by dual staining with PI and membrane-potential sensitive probes, such as bis-(1,3-dibutylbarbituric) trimethine oxonol (DiBAC4(3)) that permeates through depolarized membranes. Such assays allow detecting changes in membrane permeability to small ions which may be lethal in the absence of evident membrane lesions. E. coli B WP2 strains with spontaneous deficiencies in wall lipopolysaccharides are permeable to small- and mid-size organic chemicals and fluorochromes. We have inactivated several of their key genes involved in antioxidant defence, generating suitable biosensors of oxidative damage (Herrera et al., Curr. Protocols Cytometry 24 (1), 2003).

METHODS: WP2 strains IC188 (control) and IC5232 (superoxide dismutase deficient) were incubated with different prooxidants (Sigma) generating either superoxide anion (paraquat, menadione) or peroxides (tert-Butyl hydroperoxide). Bacterial viability was assessed on a Galileo flow cytometer (Beckman-Coulter) using BacLight LIVE/DEAD kit (Thermo Fisher Scientific), based on SYTO-9 and PI, or by dual staining with DiBAC4(3) and PI (Thermo Fisher). Bacterial growth was assessed by measuring optical density of bacterial preparations at 600nm absorption (OD600).

RESULTS: Bacterial growth OD600 curves showed that all prooxidants tested inhibited bacterial growth even at low doses, more evident on the antioxidant-deficient strain. Compounds generating superoxide caused a decrease in viable cells reflected by decreased number of live cells with polarised membrane (DiBAC4(3)pos PIneg) and increase of depolarised cells with apparently non-permeabilized membrane (DBAC4(3)pos PIneg). In these conditions, live cells (SYTO9pos PIneg) diminished and an intermediate population (SYTO9neg PIneg) was increased. In superoxide-induced toxic conditions, canonical PIneg apparently non-permeabilized membrane (DiBAC4(3)pos PIneg) was not detectable. In contrast, in peroxide-induced cytotoxicity compounds, cell growth inhibition was associated with appearance of canonical dead cells in both assays of viability.

CONCLUSIONS: Although the biological basis of the described discrepancy needs to be elucidated, our results show that, at least in bacteria, the specific mechanisms of oxidative cytotoxicity of different prooxidants may lead to ambiguous results with simple assays of viability. This supports that studies of cytotoxicity in bacteria should combine analysis of both membrane depolarization and permeabilization to define better cell viability and death.

CONFLICT OF INTEREST: No potential conflict of interest to report.

ACKNOWLEDGMENTS: This work was supported by the Spanish Ministry of Science and Innovation PID2019-108070RB-I00ALI and Generalitat Valenciana GV/PROMETEO2018-126.

Keywords: cell cycle, cell death, Fusarium mycotoxins, flow cytometry

There are a wide variety of stimuli and conditions, both physiological and pathological, that can trigger cell cycle progression and programmed cell death; but not all cells will necessarily die in response to the same stimulus. One of these triggers which have been widely studied are mycotoxins. These compounds are produced by Fusarium species and have demonstrated cytotoxicity and neurotoxicity through impairing cell proliferation, gene expression and induction of oxidative stress. The aim of present study was to analyze the cell cycle progression and cell death pathway by flow cytometry in undifferentiated SH-SY5Y neuronal cells exposed to α-zearalenol (α-ZEL), β-zearalenol (β-ZEL) and beauvericin (BEA) over 24h and 48h individually and combined at the following concentration ranges: from 1.56 to 12.5 µM for α-ZEL and β-ZEL, from 0.39 to 2.5 µM, for BEA, from 1.87 to 25 µM for binary combinations and from 3.43 to 27.5 µM for tertiary combination. Alterations in cell cycle were observed remarkably for β-ZEL at its highest concentration in all treatments where engaged (β-ZEL = BEA and β-ZEL + α-ZEL), for both 24h and 48h by activating the cell proliferation in G0/G1 phase (up to 43.6%) and causing delays or arrests in S and G2/M phases (up to 19.6%). Tertiary mixtures revealed increases of cell proliferation in subG0 phase by 4-folds versus control. Similarly, for cell death among individual treatments β-ZEL showed a significant growth in early apoptotic cells population at highest concentration assayed as well as for all combination treatments where β-ZEL was involved, in both early apoptotic and apoptotic/necrotic cell death pathways.

Keywords: cell cycle, cell death, Fusarium mycotoxins, flow cytometry

CONFLICT OF INTEREST: No potential conflict of interest to report.

Acknowledgments: This work was supported by the Spanish Ministry of Science and Innovation PID2019-108070RB-I00ALI and Generalitat Valenciana GV/PROMETEO2018-126.
Bronchoalveolar lavage (BAL) is a useful method of respiratory tract investigation. The lavage of part of the lung allows harvesting cellular and non-cellular compounds of this space. Although inflammatory cells like macrophages, lymphocytes, neutrophils and eosinophils are more prevalent, additional different abnormal cells can be found in case of pulmonary malignant pathology. Currently, flow cytometry analysis has been widely used in the identification of the subpopulations of lymphoid cells. Additionally, DNA analysis can be an aid in the identification of hematopoietic neoplasms as well as primary lung cancer and other metastatic lung tumours. In this study we evaluate the viability of BAL flow cytometric analysis in finding malignant cells.

Methods: Between 2010 and 2020, 193 samples of BAL from oncology patients were analysed by flow cytometry for the identification of lymphoid cells subpopulations. In addition, samples with clinical history of solid tumour or in those cases where a CD45+ population was detected (N=42) were further characterised using a pan-cytokeratin antibody. Whenever cytokeratin+ population was found, DNA content evaluation was performed using the Ber-EP4 antibody together with DRAQ5 dye. The results obtained by flow cytometric analysis were then compared with the cytology.

Results: From the 42 studied cases, DNA content was not possible in 16 due to the low number of Ber-EP4+ CD3-, CD14-, CD45- cells present. The remaining 26 cases showed an abnormal DNA content, with a median DNA Index (DI) 1.55 (min. 1.33 – max 2.48) and 77% of the cases had a DI between 1.4 and 1.6. S phase fraction had a median of 6.40 (min 0.01% – max 51%). However, in only 5 cases cytologic studies confirmed the presence of tumour cells (3 lung adenocarcinoma, 1 gastric adenocarcinoma and 1 lymphocytic lymphoma).

Conclusion: Cells with abnormal DNA content are usually associated with malignant processes which makes flow cytometric analysis a useful aid in finding pathological cells. In our study, DNA ploidy was hard to validate due to the lack of specific cell markers that would make the match of the aneuploid peak to the tumour cells since BAL cells, such as macrophages and other high proliferative cells, may have an aneuploid/hyperdiploid DNA content. This phenomenon can explain why in only 5 cases malignant cells were confirmed by cytology. We believe that DNA content evaluation by flow cytometric analysis combined with more tumour specific antibodies such as an anti-cytokeratin specific or the thyroid transcription factor-1, could play a major role in the characterization of the tumour microenvironment in BAL specimens.
CD39 AND CD73 EXPRESSION ON T CELLS AND TUMOR CELLS IN BLADDER CANCER

Frederico Furriel; Ana Lúcia Santos; Célia Gomes; Belmo Parada; Vitor Sousa; Paulo Gonçalves; Sandra Silva; Isabel Silva; Paula Larbanjara; Antú Paiva

Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Department of Urology, Leiria Hospital Center (CHL), Leiria, Portugal; Unit of Operational Management of Cytometry, Coimbra Hospital and University Centre (CHUC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Coimbra Hospital and University Centre (CHUC), Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Serviço de Anatomia Patológica, Coimbra Hospital and University Centre (CHUC), Coimbra, Portugal.

CONTACTS f.furriel@gmail.com

ABSTRACT

Introduction: Emerging evidence suggests that tumors generate adenosine in tumor microenvironment (TME), inhibiting effector function of multiple immune cell subtypes, thereby allowing neoplastic growth. This is dependent on the adenosinergic pathway (AP), in which CD73 and, more recently CD39, seem to play a key role. We aim to quantify and characterize the phenotype of different subpopulations of T cells (CD4+, CD8+ and Treg) at tumor microenvironment, in surrounding non-malignant tissue and in peripheral blood and, in parallel, evaluate the expression of CD39 and CD73 in urothelial bladder cancer (BC) cells. This is part of a larger study aiming to trace an immunologically-based signature of the AP in BC, with therapeutic and prognostic purposes.

Methods: We conducted a study with 24 patients with histological confirmed urothelial carcinoma of the bladder, with indication for surgery – transurethral resection of the bladder or radical cystectomy. Peripheral blood, tumor and normal-appearing matching tissue were sampled and analyzed by flow cytometry, with a FACScanto (R) II cytometer. A systemic functional evaluation of the immune and adenosinergic systems, with regard to the subpopulations of T cells and adenosinergic pathway (CD39; CD73) was performed.

Results: Compared to the normal matching bladder tissue, the immunophenotype of BC tissue was characterized by a specific profile of T cell infiltration: increased CD4+ (44.7 vs. 32.3%) and decreased CD8+ (52.3 vs. 66.1%) T cells. Most notably, BC exhibited a marked increase of regulatory T cells (CD4+, CD25+bright, CD127-dim) (18.6 vs. 6.4%, p<0.008). The majority of T cells, particularly in tumor and normal tissues, had the CD39+/CD73- phenotype. We found an evident increase on the expression of CD39 in all subpopulations of T cells, (CD4+, CD8+ and Treg) either with an activated phenotype (HLA-DR+ and/or CD25+) or not, reaching a mean factor of 20.0 x, when comparing tumor microenvironment to peripheral blood, and 6.6 x compared to normal matching tissue. There was a significant correlation between the percentage of CD4+ Treg cells and the expression of CD39, not only in peripheral blood (p=0.005), but also in normal tissue (p=0.005) and tumor tissue (p=0.018). The same correlation occurred for CD8+ T cells, but only in tumor tissue (p=0.012). In turn, CD73 expression is mostly associated with tumors, as 53.6 ± 13.2% of tumor cells express this enzyme.

Conclusion: Our results point to an immunosuppressive tumor microenvironment in bladder cancer, with a decreased infiltration of cytotoxic T cells and an increase of Treg subpopulations, which seems to be associated with an amplified activity of the adenosinergic pathway, where T cells (expressing CD39) and tumor cells (expressing CD73) apparently play a complementary role.

No potential conflict of interest to report.

PERIPHERAL LYMPHOCYTE SUBPOPULATIONS IN PROSTATE CANCER - DATA FROM AN ANIMAL MODEL

Elisabete Nascimento-Goncalves; Ana L. Rocha-Faustino; Maria João Pires; Carolina Fonseca; Gabriela Martins; Carlos Palmarin; Bruno Colaco; Rita Ferreira; Paula A. Oliveira

1. Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Vila Real, Portugal; 2. Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora, Portugal; 3. Department of Veterinary Sciences, University of Trás-os-Montes and Ate Douro (UTAD), Vila Real; 4. Department of Immunology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal; 5. Department of Zootechnics, UTAD, Vila Real, Portugal; 6. LAGV-REQUIMTE, Department of Chemistry, University of Aveiro (UA), Aveiro, Portugal

CONTACTS ana.fauca@ipcustomiz.com.pt

ABSTRACT

Introduction: Prostate cancer (PCa) is one of the most common cancers among men worldwide. The presence of immune cells in human cancer raises a fundamental question in oncology. The interaction between immune system and PCa is an important field for translational research. This work aimed to characterize the peripheral lymphocyte subpopulations in a PCa animal model.

Methods: Twenty-five male Wistar Unilever rats (Rattus norvegicus) with twelve weeks of age were randomly divided into two groups: Control (n=10) and Induced (n=15). All procedures were approved by the Portuguese Competent Authority (DGAV no. 021326). Prostate lesions were induced through the administration of flutamide (50 mg/kg, TCI Chemicals, USA), testostosterone propionate (100 mg/k, TCI Chemicals, USA) and N-methyl-N-nitrosourea (30 mg/k, Sigma Chemical Co., Spain), and crystalline testostesterone implants. Animals were humanely sacrificed at 61 weeks of age. Peripheral blood of all animals was collected by intracardiac puncture and transferred into tubes containing EDTA salt as an anticoagulant for flow cytometry analysis. The following conjugated monoclonal antibodies were used: cyCD3-BV421, CD3-FITC, CD25-APC, CD45-BV510, CD127-PE, CD161-FITC, CD4-PE/Cy7, CD45RA-APC/Cy7, OX-82-PE and CD8a-PerCP. The flow cytometry immunophenotyping was performed in a BD FACScantoTM II cytometer (BD Biosciences, USA) and data were analysed with InfinicytTM, flow cytometry software 1.7 version. Statistical analysis was performed using SPSS 25. The differences were considered statistically significant at p<0.05. Similarly, CD8+ lymphocyte population was higher in control group than in induced group (9.56±0.74 vs 6.38±0.32) (p<0.05). Inversely, the population of regulatory T cells (Trreg) (2.96±0.46 vs 4.63±0.35), the Trreg/CD8 ratio (0.35±0.09 vs 0.45±0.08) and the Trreg/Natural Killer ratio (0.52±0.05 vs 1.03±0.13) were higher in induced group when compared with control one (p<0.05).

Conclusion: The population of Trregs increased in induced animals, while the population of NK decreased in these animals, which is in accordance with data previously published by other authors reporting the increase of Trregs and decrease of NK cells in animals with cancer. The characterization of these immune system subpopulation can be important for other studies such as preclinical cancer models.
CONFLICT OF INTEREST

No potential conflict of interest to report.

ABSTRACT

Introduction: Long-term and regular exercise training is suggested to have an immunomodulatory effect, protecting against several diseases. This work aimed to analyze the effect of exercise training on peripheral lymphocyte subpopulations in a model of prostate cancer (PCa) chemically and hormonally induced.

Methods: Fifty-five male Wistar Unilever rats of 4 weeks of age were randomly divided into four experimental groups as follows: control sedentary group (SED+CONT; n=10), control exercised group (EX+CONT; n=10), induced sedentary group (SED+PCa; n=15) and induced exercised group (EX+PCa; n=20). Prostate lesions were induced through the sequential administration of flutamide (50 mg/kg, TCI Chemicals, USA), dihydrotestosterone propionate (100 mg/kg, TCI Chemicals, Portland, USA) and N-methyl-N-nitrosourea (30 mg/kg, Sigma Chemical, Spain), and subsequent implantation of tubes filled with crystalline testosterone (Sigma Chemical, Spain). At eight weeks of age, exercised animals started the training in a treadmill (Treadmill Control LE 8710, USA), 5 days/weeks, for 53 weeks. Animals were sacrificed at 61 weeks of age with crystalline testosterone (Sigma Chemical, Spain). At 47 and 87 years and mean age of 69 years. All samples were evaluated, by flow cytometry and cytopathology. To 500 µL of serous fluid sample was added the monoclonal antibodies: 5µL of CD326 FITC, 10µL of CD33 PE, and 5µL of CD45 APC. After an incubation period of 15 min in the dark was added 2 ml of FacsFlow, centrifuged, and resuspended in 500 µL of serous fluid sample was added the monoclonal antibodies: 5µL of CD326 FITC, 10µL of CD33 PE, and 5µL of CD45 APC. After an incubation period of 15 min in the dark was added 2 ml of FacsFlow, centrifuged, and resuspended in 500 µL of FacsFlow. The acquisition was performed in a FACSCalibur; in a first step acquired all the events, in a second step performed a gate in CD45 negative events and acquired until 500 thousand events. The results were analyzed by the InfinicytTM 1.8. We search the presence of CD45-CD33-CD326+ cells; that identification leaves us to presume that positive sample for malignant epithelial cells and their absent negative. The results of the flow cytometry were compared with the cytopathology reports demonstrated a sensitivity of 92% and specificity of 85%. Of the 32 samples analyzed, 30 samples (94%) had concordant results and 2 samples (6%) discordant results. The discordant samples were acuatic fluid, one false negative and one false positive. In the future is needed to establish the minimum value of frequency of CD45-CD33-CD326+ cells to assume a positive sample for malignant epithelial cells. Some samples have a low number of cells, to overcome this limitation must acquire the largest possible number of cells. The detection of CD45-CD33-CD326+ cells by flow cytometry is strongly indicative of the presence of malignant epithelial cells, presenting, in our study, a sensitivity of 92% and specificity of 89%.

Our work clearly shows that study of the CD326 expression by flow cytometry in effusions can be a useful method to identify non-hematological cells of epithelial origin in a routine laboratory.
THE CYTOTOXIC POTENTIAL OF STARCH-CAPPED SILVER-NANOPARTICLES (AGNPs) AND THEIR ABILITY TO INDUCE CELL CYCLE ARREST IN PROSTATE CANCER CELLS

AUTHORS: Morais M.1,2,3*; Machado V.1*; Dias F.1; Palmeira C.4,5,6; Martins G.1,3; Fonseca M.1; Martins C.1; Prior J.7; Teixeira A. L.1; Medeiros R.1,2,3,6

AFFILIATION: 1. Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB2, Porto, Portugal; 2. Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto, Portugal; 3. ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Portugal; 4. Department of Immunology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal; 5. Experimental Pathology and Therapeutics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal; 6. Faculty of Health Sciences of Fernando Pessoa University (UFF), Porto, Portugal; 7. LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; 8. Faculty of Medicine, University of Porto (FMUP), Porto, Portugal

CONTACTS: mariana.morais@ipoporto.min-saude.pt

ABSTRACT: Prostate Cancer (PC) is the second most frequent cancer diagnosed in men and the fifth leading cause of death worldwide. The androgen deprivation therapy (ADT) is a therapeutic approach frequently used in advanced stages of the disease. However, patients usually develop resistance within 2-3 years, progressing to Castration Resistant PC (CRPC). In the last years, new drugs with increased sensitivity or aiming to new targets came up but also showed limited benefits leading to patients' relapse. Thus, overcoming treatment resistance remains a major challenge in PC patients' management, making the development of new therapeutic approaches of great importance. Silver nanoparticles (AgNPs) synthesized through green approaches have been studied as anticancer agents because of their specific physical-chemical properties. Their effects are highly dependent on shape, size, and composition, as well as on cells' characteristics, suggesting a specific-cell type effect. According to literature, AgNPs can exert their effect in cell membrane, nucleus and mitochondria leading to cell cycle arrest and ultimately to apoptosis. This study explored the cytotoxic capacity of starch-capped AgNPs, synthesized through green methods, in LNCaP and PC-3, a hormonal-sensitive and hormone-resistant PC cell line, respectively.

METHODS: AgNPs were synthesized in a microwave pressurized synthesizer and characterized by Ultraviolet-Visible (UV-Vis) spectroscopy, Transmission Electron Microscopy (TEM) and Energy-dispersive X-ray spectroscopy (EDX). Their cytotoxicity was assessed regarding their ability to alter morphological aspect (optical microscopy), induce damage in cytoplasmic membrane (Trypan Blue Assay), mitochondria (WST-1 assay), cellular proliferation (BrdU assay) and cell cycle (Propidium iodide and flow-cytometry).

RESULTS: AgNPs showed Surface Plasmon Resonance (SPR) of approximately 408 nm and average size of 3 nm. They successfully altered the cells' morphology, inducing damage in cytoplasmic membrane and mitochondria, at concentrations equal and above 20 ppm. After treatment with AgNPs, there was a significant increase of the number of cells in G0/G1 phase and decrease of cells in the G2/M phase for the LNCaP cell line. In the PC-3 cell line, there was a significant decrease of the number of cells in G0/G1 phase and increase of cells in the G2/M phase.

CONCLUSION: Starch-AgNPs showed potential as anticancer agents in PC. They were able to induce cytoplasmic and mitochondrial damage, leading to cell cycle arrest in G0/G1 and G2/M, blockage of proliferation and consequent death in LNCaP and PC-3 cells, respectively. The arrest in different phases of the cell cycle may be due to PC-3's more aggressive phenotype which allows them to progress more in the cell cycle. However, their arrest in G2/M phase may be associated with the G2/M DNA damage checkpoint, which ensures that cells do not initiate mitosis until damages are sufficiently repaired.

CONFLICT OF INTEREST: No potential conflict of interest to report.
Monocytes/macrophages profile determined by flow cytometry as a biomarker to pathological inflammation in patients with common variable immunodeficiency

Kauzar Mohamed Mohamed; Kissy Guevara-Hoyer; Marcos Vitiuela; Eduardo de la Fuente; Natalia Rodríguez Vicente; Bárbara Alonso Arenilla; Rebeca Pérez de Diego; Miguel Fernández-Arquero; Silvia Sánchez-Ramón

Background: Common variable immunodeficiency (CVID), the most common symptomatic primary immunodeficiency, comprising a heterogeneous group of patients with hypogammaglobulinemia. Monocyte dysfunction may be important for immunopathogenesis in subgroups of patients with primary hypogammaglobulinemia.

Methods: We compared the immunological profile of monocytes-macrophages in 4 CVID patients with different clinical phenotypes (hematologic/malignancy, cytopenias, unexplained persistent enteropathy) to a healthy control to the Hospital Clínico San Carlos, Madrid, Spain.

Results: In the immunological study, the patient with hematological malignancy showed a marked increase in the percentage of intermediate monocytes (32.4%), as did the patient with cytopenia (10.5%). The CVID patient with intermediate monocytes (32.4%), as did the patient with cytopenia (10.5%). The CVID patient associated with intermediate monocytes (32.4%). The patient with unexplained persistent enteropathy showed intermediate levels of activation in this monocyte subpopulation (12.4%), as did the patient with cytopenia (10.5%).

Conclusion: The analysis of monocytes-macrophages profile in CVID patients through flow cytometry could identify early mediators of hyper-inflammatory response associated with a severe presentation of the disease behaves as a prognostic biomarker.